
1. Introduction
Earth's climate has varied dramatically over the past 2.5 billion years, ranging from “hothouse” climates such 
as the Eocene (55.8–33.9 Ma) (Berner, 1990; Greenwood & Wing, 1995) to “Snowball Earth” episodes, when 
virtually all of the Earth's surface was encased in ice (Hoffman & Schrag, 2002; Pierrehumbert et al., 2011). 
Geological evidence points to at least three snowball episodes, with the first event occurring at the beginning 
of the Paleoproterozoic era, at approximately 2.5  Ga (Evans et  al.,  1997; Kirschvink et  al.,  2000). The next 
two occurred during the Cryogenian period (720–635 Ma), with inception times about 50 Myr apart (Hoffman 
et al., 1998; Prave et al., 2016; Rooney et al., 2015).

What caused snowball climates at some points, but warm climates at others? Over geologic timescales, the 
atmospheric carbon dioxide (CO2) concentration, and therefore global temperature, is set by the balance between 
sources (volcanic outgassing) and sinks (silicate weathering) (Berner & Lasaga, 1989; Marshall et  al.,  1988; 
Urey, 1952; Walker et al., 1981). Silicate weathering and marine carbonate burial sequester CO2 from the ocean 
and atmosphere until it is recycled back by the subduction of oceanic crust (Berner et al., 1983). Indeed, varia-
tions in volcanic outgassing and availability of weatherable materials have both been suggested to be dominant 
controls on Earth's long term climate evolution (e.g., Macdonald et al., 2019; McKenzie et al., 2016).
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Earth's temperature and CO2 concentration are not well known deep into the planet's history. Although the Sun's 
luminosity has slowly increased since the birth of the solar system, there is no evidence for secular warming of 
the climate (Feulner, 2012). To compensate for the increase in absorbed solar radiation, the mean CO2 concentra-
tion has very likely decreased over time (Halevy & Bachan, 2017; Krissansen-Totton et al., 2018). This decrease 
has not been smooth, but rather accompanied by significant variability, the cause of which may be multifactorial 
and is still an active area of research (Baum et al., 2022; Franks et al., 2014; Lenardic et al., 2016; Macdonald 
et al., 2019; Montañez et al., 2016; Park et al., 2021).

Past studies have generally attempted to understand variability in atmospheric CO2 concentration in a determin-
istic fashion, by investigating specific components of the carbon cycle and their potential effect on climate. For 
example, we can attempt to constrain the independent effects of continental configuration, topography, biochem-
istry, ocean circulation, and a wide range of other processes. Here we take a different approach, investigating the 
effects of explicitly random or stochastic processes in the long term carbon cycle. This approach views the climate 
system as an inherently stochastic, complex system and attempts to understand what models of randomness agree 
with our sparse and incomplete record of Earth's climate on the longest timescales. Specifically, we anchor our 
modeling and discussion to the aforementioned Snowball Earth episodes, as they represent very important excur-
sions from the mean state. Our conception of long-term climate variability must be compatible with the observed 
timing of snowball events.

That is not to say that stochastic models are absent from the climate literature. There is a long history of 
stochastic climate modeling touching virtually all components of the Earth system (Farrell & Abbot,  2012; 
Franzke et  al.,  2015; Hasselmann,  1976; Imkeller & Monahan,  2002; Imkeller & Von Storch,  2001). Some 
recent studies have used stochastic methods to model Earth's carbon cycle (e.g., Arnscheidt & Rothman, 2021; 
Wordsworth, 2021; Zeebe et al., 2017). In this paper, we take a similar approach by setting the complexity of the 
three-dimensional, chaotic climate system aside to examine the consequences of two simple stochastic models of 
the carbon cycle over the past ∼2 Gyr. We do not suggest that our modeling is a precise representation of Earth's 
long-term carbon record, but use it to understand what kinds of variability (what models) are compatible with 
the snowball record.

At the beginning of Section 2, we explain the primary physical equations and assumptions governing both of 
these models. In Section 2.1, we interrogate the stochastic model recently published by Wordsworth (2021) and 
discuss its compatibility with Earth's record of snowball periods. In Section 2.2 we describe an alternative model 
with a deterministic weathering sink but stochastic CO2 outgassing. In Section 3 we explain how we solve the 
model equations numerically and produce a large ensemble of these solutions. In Section 4 we present the results 
of these simulations, compare with the model of Section 2.1, and discuss compatibility with Earth's snowball 
record. Finally, in Section 5, we offer some concluding remarks and discuss possible avenues of future research.

2. Simple Stochastic Climate Modeling
We use a simple, zero-dimensional model of stochastic, long-term evolution of Earth's carbon cycle and climate. 
The time-evolution of Earth's temperature is governed by the balance between outgoing longwave radiation 
(OLR) and absorbed solar radiation,

��̇ =
� (�)
4

[1 − �] − OLR(�, � ), (1)

Where C is the system's heat capacity, T is the global mean surface temperature, t is time, F is the time-dependent 
incident solar flux, α is the planetary albedo, OLR is the temperature-dependent and CO2-dependent OLR, and f 
is the atmospheric CO2 concentration in ppm. We set the albedo to a constant 30%.

In reality, due to the response of clouds and ice to surface temperature, albedo is a complex function of temper-
ature. However, the goal of this model is to simulate the likelihood of different temperatures over time, not 
represent the full-complexity of the ice-albedo feedback. Instead, we assume a hypothetical snowball threshold 
temperature of Tsnow = 280 K (Pierrehumbert et al., 2011) where the ice-albedo feedback runs away. The precise 
value of this threshold does not affect our conclusions.

The solar flux increases over time according to the standard approximation (Gough, 1981),
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𝐹𝐹 (𝑡𝑡) = 𝐹𝐹0

[

1 +
2

5
(1 − 𝑡𝑡∕𝑡𝑡0)

]−1

, (2)

Where F0 is the modern value of 1,366 W/m 2 and t0 is 4.5 Gyr.

The heat capacity of the ocean-atmosphere system is such that the temperature approaches equilibrium over 
∼10 3 yr, much more rapidly than the 10 6–10 9 yr timescales of interest in our simulations. Accordingly, we assume 
instantaneous temperature equilibrium and set 𝐴𝐴 �̇�𝑇  to zero. We also linearize OLR around Earth's preindustrial 
surface temperature and CO2 concentration of Te = 288 K and f0 = 285 ppm, respectively.

OLR = OLR0 + � (� − ��) − � log (�∕�0) , (3)

Where a = 2 W/m 2/K (Abbot, 2016) and b = 5.35 W/m 2 (Myhre et al., 1998). To balance Equation 1 at preindus-
trial conditions and t = 4.5 Gyr, OLR0 must be equal to F0(1 − A)/4. These assumptions, plugged into Equation 1, 
yield

0 =
� (�)
4

[1 − �] − OLR0 − � (� − ��) + � log (�∕�0) (4)

Which can be solved directly for temperature as a function of time and CO2 concentration,

� (�, � ) = �� +
1
�

[

� (�)
4

(1 − �) − OLR0 + � log (�∕�0)
]

. (5)

This is the governing equation of all our subsequent modeling. We note that the linearization in Equation 3 is a 
fairly good approximation when T is within 210–310 K (Koll & Cronin, 2018).

2.1. Stochastic CO2 Concentration

Equation 5 defines temperature in terms of time t (capturing the brightening sun) and the carbon dioxide concen-
tration f. To introduce randomness into this system, one approach is to model f as a stochastic process. We analyze 
and discuss this approach here, along with its primary assumptions and implications, before continuing with the 
development of our new model equations.

Recently, Wordsworth (2021) used an Ornstein-Uhlenbeck process (Dobrow, 2016; Jacobs, 2010) to represent 
randomness in f. This approach models f with Gaussian noise that relaxes to a prescribed value 𝐴𝐴 𝐴𝐴 . They used a 
nondimensional representation, y = f/f0, and the model equation is

𝑑𝑑𝑑𝑑 =
1

𝜏𝜏

[

𝑑𝑑 −
𝜒𝜒(𝑡𝑡)

𝑓𝑓0

]

𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝜎𝜎𝜎 (6)

Where τ is the relaxation timescale, 𝐴𝐴 𝐴𝐴 is the time-dependent value of f that would achieve perfect temperature 
equilibrium (at Te), σ scales the noise, and dB is a Wiener process (Gaussian or Brownian noise). In this case, τ is 
analogous to the timescale required for chemical weathering to restore temperature equilibrium.

In their model, randomness occurs directly in the CO2 concentration and f is the sole prognostic variable. The 
stochastic differential equation above is integrated numerically over 10 8–10 9 yr and the resulting sequence of 
discrete f values determines the simulated temperature history via Equation 5. As time proceeds, f varies randomly 
but is restored to equilibrium over a timescale of τ ≈ 3 Ma, which is short compared to the integration timescale. 
Figure 1 shows one example simulation using this equation, where σ was chosen for a reasonable chance that the 
temperature would reach Tsnow.

Relaxation of f toward 𝐴𝐴 𝐴𝐴 happens considerably faster than the slow, insolation driven drift in 𝐴𝐴 𝐴𝐴 itself. As a 
result, over many random realizations of this model, the CO2 concentration is approximately normally distributed 
around 𝐴𝐴 𝐴𝐴 at all points in time.

� ∼
(

�(�), �2) , (7)
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Where 𝐴𝐴   is the normal distribution with mean of 𝐴𝐴 𝐴𝐴 (t) and variance of σ 2. It is relatively straightforward to exam-
ine the resulting temperature probabilities over time, using Equation 5.

The top row of Figure 2 shows distributions in the CO2 concentration f at three different times over the most 
recent 500 Myr. Earlier in time, the sun is fainter so a higher 𝐴𝐴 𝐴𝐴 value is required for a mean temperature of 
288 K. At later times, the brighter sun results in lower 𝐴𝐴 𝐴𝐴 values, shifting the distribution down. The bottom 
row of this figure shows the same distributions, but plotted against the corresponding temperatures. Because of 

Figure 1. A single realization of the stochastic CO2 concentration model described by Equations 5 and 6, over 250 Myr, with 
τ = 3 Myr and σ = 10. Panels (a) and (b) show the CO2 concentration over time, with the equilibrium value 𝐴𝐴 𝐴𝐴 drawn in gray. 
Panel (a) shows the entire time series and panel (b) shows the same simulation, but zoomed into the ∼5 Myr surrounding the 
temperature minimum. Panels (c) and (d) show temperature evolution for the same simulation, again zoomed in for panel 
(d), with temperatures below 280 K highlighted in blue. Panels (b) and (d), in particular, highlight the exquisite temperature 
sensitivity when CO2 concentrations are low. A relatively small change in f near the minimum between 13 and 11 Ma 
produces a very dramatic drop in temperature. Note that sharp negative excursions are a consequence of the logarithmic 
dependence of temperature on CO2, and not an ice-albedo feedback.

Figure 2. In the top row, normal distributions in the atmospheric CO2 concentration ( f ), for several σ values, at three 
different snapshots in time. The 𝐴𝐴 𝐴𝐴 values are the distribution means required to produce a mean temperature of Te = 288 K 
using Equation 5. The bottom row shows the exact same distributions, but plotted in temperature space instead. These plots 
show how, even though the mean temperature does not change (by design), the space of probable temperatures widens over 
time and cold temperatures become strongly favored. The logarithmic relationship between T and f produces this effect. The 
hypothetical snowball temperature of 280 K becomes dramatically more likely at later times.
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the logarithmic relationship between T and f, the probable temperature space widens as time proceeds and cold 
temperatures become significantly more likely than warm ones. This happens because, for a single value of σ, the 
variation in f represents a larger fractional change when the mean is lower. In this model, snowball temperatures 
are dramatically more likely at later times. This phenomenon was also recently discussed by Graham (2021).

Figure 3 shows exactly how much more likely cold excursions become at later times in this model: orders of 
magnitude. The left panel shows the cumulative probability of the CO2 concentration required to achieve a hypo-
thetical snowball temperature of 280 K, for several values of σ, over time. Note the logarithmic vertical axis. 
Beyond the most recent periods of time, a snowball is effectively impossible. The right panel shows the temper-
ature corresponding to the first percentile of the f distributions over time, showing a precipitous drop in this 
temperature as time proceeds.

To summarize, this model represents randomness in the climate system by making the CO2 concentration approx-
imately equivalent to a normally distributed random variable with a mean value that drifts over time to maintain 
stable temperature. Outside the most recent period, stochastically induced cold temperatures are extremely low 
probability—effectively prohibited. For higher values of σ, as Wordsworth (2021) showed, the same transition 
occurs as time proceeds, but it simply occurs at earlier times.

However, it is worth considering whether randomness in the climate system is well represented by Gaussian noise 
in the CO2 concentration directly. First, the principal results of this model strongly contradict Earth's geologic 
record, which indicates snowball episodes occurred roughly 2.5 Ga and 700 Ma. To be fair, Wordsworth (2021) 
focuses mainly on application to exoplanets, but in that case assuming Earth-like weathering sinks and Sun-like 
stellar properties considerably limits the model's applicability.

Second, it is questionable to assume that CO2 concentrations are well represented by symmetric noise. To first 
order, atmospheric CO2 is controlled over long periods by volcanic outgassing (source) and chemical weathering 
(sink). It is intuitive to assume that volcanic outgassing is noisy, as it is comprised of eruptions of various magni-
tudes and timescales. This justifies a noisy, non-negative, source of carbon dioxide. While the weatherability of 
Earth's crust has probably varied considerably over Earth history (Macdonald et al., 2019), these fluctuations 
occur on longer timescales and are unlikely to resemble the character of noisy volcanic outgassing.

This model yields conceptual insights. It demonstrates the basic point that any change in atmospheric CO2 concen-
tration produces a larger temperature response when the initial concentration is lower. This response is strongly 
skewed toward cold temperatures because of the temperature's logarithmic dependence on CO2. Figure 2 demon-
strates these effects. However, this model contradicts Earth's snowball record and may be of limited relevance to 
exoplanets because of its strong assumptions about Earth-like weathering behavior and boundary conditions. It 
also makes no explicit distinction between weathering and outgassing, limiting its physical interpretability.

Figure 3. On the left, the cumulative probability of snowball temperatures for different values of σ over time. Each line 
represents the probability that random variation in f, as defined by Equation 6, would produce T ≤ 280 K. As expected 
from Figure 2, the snowball probability plummets at earlier times. On the right, the temperatures corresponding to the first 
percentile of the f distributions. Although the first percentile is an arbitrary metric, it illustrates the very strong bias against 
cold temperatures at earlier times.
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2.2. Stochastic CO2 Outgassing

We develop a model with a more physically consistent representation of long-term CO2 outgassing and removal. 
In our model, the temperature is still driven by CO2 concentration and the secular brightening of the sun defined 
by Equation 5. However, in this case the CO2 concentration is not a stochastic variable itself, but is governed by 
the balance between deterministic weathering (sink) and stochastic volcanic outgassing (source).

�̇�𝐶(𝑡𝑡) = 𝑉𝑉 (𝑡𝑡) −𝑊𝑊 (𝐶𝐶), (8)

Where C is the total ocean atmosphere-ocean reservoir of CO2, V is the volcanic CO2 outgassing rate, and W is the 
rate of CO2 sequestration via silicate weathering. Weathering is prescribed by the traditional WHAK formulation 
(Walker et al., 1981), where the weathering rate is exponentially dependent on temperature changes,

� (� ) = � exp
(

� − ��

��

)

. (9)

Here, k is a calibration constant and Ts is the exponential scaling factor. Note that we exclude direct dependence 
on carbon dioxide concentration because, with it, weathering can no longer be calibrated to the same equilibrium 
temperature at different solar forcing (Pierrehumbert, 2010).

To evaluate the weathering equation, we convert the total carbon C to temperature T by first converting to concen-
tration f in ppm. To do this, we use the simple ocean-atmosphere partitioning model of Mills et al. (2011),

𝑝𝑝 = 0.78
𝐶𝐶

𝐶𝐶 + ℎ
, (10)

Where p is the CO2 partial pressure and h is a constant 2.33 × 10 8 Tmole CO2. From there, we assume a back-
ground partial pressure of approximately one bar to compute the CO2 concentration f, which is used to evaluate 
Equation 5. Finally, the resulting temperature is used to compute the weathering and sequestration rate.

The outgassing rate V fluctuates stochastically and is defined by an Ornstein-Uhlenbech process,

�� = 1
�
(� − � ) �� + ���, (11)

Where τ is a prescribed relaxation time scale, μ is a prescribed mean outgassing rate, σ scales the noise term, 
and dB is a Wiener process (Gaussian or Brownian noise). Note that this equation and its parameters are distinct 
from Equation 6. Here, τ no longer represents a weathering time scale because this stochastic process represents 
outgassing, not CO2 concentration directly.

Altogether, our model consists of two differential equations. The first is a straightforward definition of how total 
ocean-atmosphere carbon changes in response to the balance of weathering and outgassing. The second defines 
stochastic variation in the CO2 outgassing rate.

�̇�𝐶 = 𝑉𝑉 (𝑡𝑡) −𝑊𝑊 (𝐶𝐶) (12)

�̇�𝑉 =
1

𝜏𝜏
(𝜇𝜇 − 𝑉𝑉 ) + 𝜎𝜎𝜎𝜎(𝑡𝑡) (13)

The difference between this model and the one discussed in Section 2.1 is that, here, neither the carbon reservoir 
C nor the CO2 concentration f are themselves stochastic processes. The carbon sink and source terms are separate. 
Weathering is deterministic and depends implicitly on temperature, as defined in Equation 9. The outgassing rate 
V is stochastic and modeled with an Ornstein-Uhlenbeck process. In contrast to the model in Section 2.1, these 
equations explicitly represent imbalances in the carbon system that drive long-term temperature change.

3. Simulations
We integrate the system of Equations  12 and  13 using the simple Euler-Maruyama method over a range of 
different parameters and analyze the statistics of the ensemble. We vary τ and σ over discrete values between 
10 5–10 9 yr and 10 −5–10 −2 Tmole/yr, respectively, performing many simulations with each available combination. 
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We execute simulations in two stages. First, we perform a relatively small number of simulations over each 
combination of τ and σ. Second, we identify which combinations yield simulations with appreciable, but not 
unrealistically high, temperature variability and perform a much larger number of simulations using those combi-
nations. This is a simple strategy to avoid wasting computation on inconsequential (τ, σ) pairs. All told, the 
ensemble is comprised of 27, 551, 040 unique simulations.

Each simulation begins at t = 2 Ga, when the equilibrium CO2 concentration is slightly above 10 5 ppm, and ends 
at 0 Ga (present day). Each simulation is also taken through a spin-up period of 0.5 Gyr to avoid starting them at 
the exact equilibrium temperature, then integrated using 1 million time steps. To prevent evaluating the logarithm 
of a non-positive number, V is restricted to be above zero and C is restricted to be above a very small fraction of its 
equilibrium value at modern insolation. These restrictions have virtually no impact on our conclusions and only 
serve to prevent computation errors with parameter combinations that produce unrealistically high variability. 
For each simulation, we store the values of C, V, T, and W at 17 equally spaced points in time. We also record the 
maximum and minimum value of each quantity along with the precise time of the temperature extrema. Table 1 
consolidates all of the model parameters along with their values and units.

4. Results and Discussion
For orientation, Figure 4 shows the results of a single simulation with τ = 30 × 10 6 yr and σ = 2 × 10 −4 Tmole/
yr. The volcanic outgassing rate, which is a realization of the Ornstein-Uhlenbeck process defined in Equation 13, 
is shown on the top in red. The total atmosphere-ocean carbon stock is shown on a log scale just below in blue. 
These are the prognostic variables of the model. The CO2 concentration, temperature, and weathering rate are 
each derived from C as described in Section 2.

Figure 5 shows more realizations of the stochastic outgassing rate for different combinations of τ and σ, stacked 
on top of each other. When τ is small, the outgassing rate quickly relaxes to the mean and the value of σ must be 
relatively high to produce random fluctuations of appreciable magnitude. In this regime, changes in the outgas-
sing rate are dominated by short-term, rapid excursions. In an intermediate regime, with τ = 30 Myr, longer-term 
fluctuations begin to appear because the relaxation time scale is longer, but rapid excursions are still evident. 

Parameter Description Value/Range Units

f0 Preindustrial CO2 concentration 285 ppm

Te Preindustrial temperature 288 K

α Planetary albedo 0.3 Dimensionless

OLR0 Equilibrium outgoing longwave radiation 239.05 W/m 2

h Ocean-atmosphere partitioning constant 2.33 × 10 8 Tmole

μ Mean volcanic outgassing rate 7 Tmole/yr

t1 Simulation start time 2.5 Ga

t2 Simulation end time 0 Ga

t0 Temporal scaling of insolation function 4.5 Ga

tspinup Model spinup duration 0.5 Ga

Ts Weathering temperature scaling 11.1 K

Tsnow Snowball threshold temperature 280 K

k Weathering calibration constant 7 Tmole/yr

a OLR temperature scaling 2 W/m 2/K

b OLR log  f scaling 5 W/m 2

F0 Modern solar insolation 1,366 W/m 2

τ Outgassing relaxation timescale 10 5–10 9 yr

σ Outgassing deviation/variability 10 −5–10 −2 Tmole/yr

Table 1 
Static Model Parameters With Values and Units
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Finally, with τ = 300 Myr, the outgassing rate is dominated by longer period drift with occasional and smaller 
magnitude short-term shocks.

Figure 6 shows the principal results of our ensemble. It shows the first temperature percentile, over time, for 
different values of τ. The first percentile is a somewhat arbitrary choice. However, the same results are evident 
for whatever small percentile is chosen. Smaller values of τ produce more rapid fluctuations in the outgassing 
rate and the likelihood of cold excursions reaching the snowball temperature increases markedly with time. With 
higher values of τ, the outgassing history transitions to long-term variability, flattening the first temperature 
percentile curves. When τ is small, snowballs are considerably more likely at later times. When τ is large, the 
outgassing rate changes more slowly and snowball likelihood is more uniform over time.

Comparing the leftmost panel of Figures 3–6 is revealing. Low values of τ in Figure 6 recover similar results 
to Wordsworth (2021), who found that the likelihood of snowball events dramatically increases over time along 
with the secular brightening of the Sun (as explained in Section  2.1). For larger values of τ, which permit 

Figure 4. An example simulation of the system defined by Equations 12 and 13. In panel (a), the stochastic outgassing rate 
V. In panel (b), the total atmosphere-ocean CO2 reservoir C. These are the prognostic model variables. Each of the remaining 
quantities is panels (c–e) is derived from C. The gray line in each panel shows the equilibrium value or the mean value 
appropriate for each quantity. For the outgassing and weathering in panels (a) and (e) it shows the mean value of 7 Tmole/yr. 
In panels (b) and (c) it shows the value required for the equilibrium temperature of T0 = 288 K, over time. Finally, in panel 
(d), it shows the equilibrium temperature of 288 K.
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longer-duration excursions in V (Figure 5), the variation of the first percentile temperature over time is much 
smaller. This is more consistent with the Earth's geological record of snowball episodes, which appear around 
2.5 Ga, 720 Ma, and 560 Ma.

The results of this simple model suggest some constraints on the variability of volcanic outgassing over Earth's 
history. For temperatures to generally remain above ∼280 K, yet not to preclude early snowball events, σ may 
have been fairly small with a larger value of τ. Qualitatively speaking, variability in the carbon cycle and atmos-
pheric CO2 must have considerable long-term drift, not simply short-term excursions. This is because a model 
with only short-term variability exhibits a very dramatic preference for snowball events later in Earth's history, 
contradicting the geologic record.

Although it is difficult to reconstruct the history of volcanic outgassing, geological evidence indicates values of 
τ > 100 Ma may be consistent with the proxy record. McKenzie et al. (2016) used detrital zircon ages as a proxy 
for continental arc-volcanism over the past 720 Myr and found fluctuations in arc activity over the timescale of 
hundreds of Myr. Furthermore, studies reconstructing paleogeographic volcanic arc distributions show that vari-
ations in arc length of up to a factor of two over may be responsible for icehouse–greenhouse transitions over the 

Figure 5. Realizations of the Ornstein-Uhlenbeck process defined by Equation 13 for three exemplary pairs of τ and σ. Five 
independent realizations are stacked vertically on top of each other.

Figure 6. The value of the first temperature percentile over time in our ensemble. Moving to the right, each panel shows 
results for a higher/longer relaxation timescale τ. Within each panel, results for different values of σ are delineated by 
color. The hypothetical snowball temperature Tsnow = 280 K is shown in each panel. When τ is small, the outgassing rate 
is characterized by rapid deviations (see Figure 5) and the likelihood of cold temperatures increases dramatically as time 
progresses. As τ becomes larger, outgassing rates vary over longer periods and the likelihood of cold temperatures becomes 
much more uniform over time. The first percentile is an arbitrary choice, but other low quantiles demonstrate the same basic 
relationships between τ, σ, and the likelihood of low temperatures.
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past billion years (e.g., Lee et al., 2013; Mills et al., 2017). These long-term variations in outgassing rate require 
τ > 100 Ma to be realized in our stochastic model.

5. Conclusion
In this paper, we discuss simple models of carbon variability deep into Earth's history. One model treats the atmos-
pheric CO2 concentration directly as a stochastic variable. While instructive, this model is limited in its flexibility 
and can only produce results that are not compatible with the Earth's history of snowball events. Another model, 
introduced here, treats carbon sources and sinks independently, and considers the effect of randomly varying CO2 
outgassing with deterministic weathering. This model is slightly more complex, allowing for a range of different 
behavior that can be compared with the first model and with the snowball record. When outgassing varies over 
longer periods, specifically with a relaxation time scale of roughly τ > 100 Myr, snowballs are possible early in 
Earth history, which is more compatible with observations.

We note here have been several suggestions regarding the absence of snowball events during the Phanerozoic, 
including the evolution of land plants, which have been suggested to bring down atmospheric CO2 while simul-
taneously increasing the strength of the silicate weathering thermostat (e.g., Berner, 1994; Dahl & Arens, 2020; 
Pierrehumbert, 2010), Another suggestion involves the evolution of fungi and lichens, which are also expected 
to increase weathering rates (Evans,  2003; Knauth & Kennedy,  2009). The increasing strength of biological 
regulatory feedbacks may be have been responsible for the change in character of Earth's glacial cycles (from 
global-scale events to frequent glaciations that do not extend to the low latitudes). Yet, at face value, the model 
of Wordsworth  (2021) predicts that snowball episodes will become increasingly likely in Earth's future with 
increasing solar luminosity unless stabilizing feedbacks, whether biological or otherwise, strengthen accordingly.

A recent study by Arnscheidt and Rothman (2020) discussed different mechanisms for transition into snowball, 
including fluctuations in radiative forcing and changes in volcanic outgassing or weathering rate. They distin-
guish between two routes to global glaciation: “route A” involving the climate system entering a limit cycle 
regime, and “route B” involving a rapid fluctuation in solar luminosity leading to a solitary “transient” glaciation. 
The negative temperature excursions caused by variable volcanic outgassing in our model can only explain “route 
A” glaciations, and are more consistent with the idea that the Sturtian, Marinoan, and Gaskiers glaciations repre-
sent three iterations of a limit cycle (as suggested by Mills et al., 2011).

Variability in the carbon cycle has often been characterized as either stochastic or deterministic (Arnscheidt & 
Rothman, 2021; Westerhold et al., 2020). The usual conceptual division is between rapid, unpredictable volcanic 
forcing (stochastic) and a slow change in the background “weatherability” of the continental land masses. 
Although this is sometimes a useful construct, it is important to remember that both of these processes can, and 
probably do, influence the climate simultaneously. For example, a snowball may be triggered by the combination 
of slowly increasing weatherability and a relatively sudden change to volcanic outgassing. Our model results with 
long τ represent a simple demonstration of this scenario, where outgassing undergoes both long-term drift and 
occasional shorter-term shocks.

An important caveat of our new model is that we have assumed stochastically varying volcanic outgassing to be 
the only driver of long-term climate variability. In reality, there are many potential triggers for Snowball events 
and long-term climate change that are unrelated to outgassing, including changing continental configuration and 
composition (Cox et al., 2016; Donnadieu et al., 2004), evolution of the biosphere (Hedges, 2004; Tziperman 
et al., 2011), sudden radiative forcing from volcanic aerosols (Macdonald & Wordsworth, 2017), or the collapse 
of a methane greenhouse (Kopp et al., 2005; Schrag et al., 2002). Indeed, if the Paleoproterozoic event was a 
transient glaciation caused by aerosol forcing, the timing of the Cryogenian Snowballs late in Earth history would 
be more consistent with the model of Wordsworth (2021).

We note that there is a wide range of opportunities to explore randomness in simple climate models. Our model 
has only considered one form of stochastic outgassing with a deterministic weathering mechanism that is 
dependent exclusively on temperature. This is, of course, an oversimplification (Baum et al., 2022; Macdonald 
et al., 2019; Park et al., 2021) and future work could investigate model equations that incorporate variability in 
other terms in Equation 5 such as the planetary albedo and weatherability (e.g., to represent the emplacement of 
highly weatherable materials and changing continental configuration). For example, it would be straightforward 
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to include a randomly varying weatherability factor that is also represented by an Ornstein-Uhlenbeck process, 
but this term need not be stochastic at all.

Data Availability Statement
All of the code developed for this project was written in the Julia language (Bezanson et al., 2012, 2017) and 
is freely available on GitHub at github.com/markmbaum/random-volcanic-climate and publicly archived on 
Zenodo (Baum, 2022). Additional code for the WHAK weathering equation can be found in the GEOCLIM.jl 
module (Baum & Fu, 2022). Plots were created using the open source Matplotlib library (Hunter, 2007).
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