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Abstract

Carbon dioxide will likely need to be removed from
the atmosphere to avoid significant future warm-
ing and climate change. Technologies are being de-
veloped to remove large quantities of carbon from
the atmosphere. Enhanced rock weathering (ERW),
where fine-grained silicate minerals are spread on
soil, is a promising carbon removal method that can
also support crop yields and maintain overall soil
health. Quantifying the amount of carbon removed
by ERW is crucial for understanding the potential of
ERW globally and for building trust in commercial
operations. However, reliable and scalable quantifi-
cation in complex media like soil is challenging and
there is not yet a consensus on the best method
of doing so. Here we discuss mass-balance meth-
ods, where stocks of base cations in soil are mon-
itored over time to infer the amount of inorganic
carbon brought into solution by weathering reac-
tions. First, we review the fundamental concepts
of mass-balance methods and explain different ways
of approaching the mass-balance problem. Then we
discuss experimental planning and data collection,
suggesting some best practices. Next, we present a
software package designed to facilitate a range of
tasks in ERW like uncertainty analysis, planning
field trials, and validating statistical methods. Fi-
nally, we briefly review ways of estimating carbon
removal using mass balance before discussing some
advantages of Bayesian inference in this context and
presenting an example Bayesian model. The model
is fit to simulated data and recovers the correct an-
swer with a clear representation of uncertainty.
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1 Introduction & Background

Large-scale removal of carbon dioxide from the at-
mosphere is probably required to avoid significant
future warming and climate change [17], but remov-
ing large masses of CO2 from the atmosphere is chal-
lenging. Carbon dioxide removal (CDR) on the nec-
essary scale—billions of tons per year—is not cur-
rently practical. However, an array of technologies
are being developed to accomplish large-scale CDR.
One promising method is enhanced rock weathering
(ERW), which accelerates the natural silicate rock
weathering process that transfers carbon from the
atmosphere to the ocean over geologic timescales
[10, 3].

In ERW, finely pulverized silicate materials like
basalt and olivine, usually called “feedstocks,” are
spread over large areas of soil like cropland and pas-
ture. Feedstock materials dissolve in the presence
of naturally occurring carbonic acid in soil, bringing
carbon into solution as bicarbonate (HCO3−). The
disintegration of these minerals is called “weather-
ing” and the weathering process is thought to regu-
late global atmospheric CO2 concentration over very
long (geologic) periods of time [27]. Spreading fine-
grained and highly weatherable material over large
areas accelerates the natural weathering rate. Plant
respiration also increases CO2 partial pressure in the
soil pore space, accelerating weathering reactions.

Bicarbonate ions produced by weathering reac-
tions are generally stable in solution and are trans-
ported in groundwater to continental rivers and
eventually to the ocean, where they are also stable
for long periods of time (generally >10 kyr). On ge-
ologic time scales, carbon in solution is cemented on
the sea floor in carbonate minerals. Alternatively,
bicarbonate ions produced in soil may form terres-
trial carbonates or become adsorbed on clay miner-
als or organic material. We refer to Hartmann et
al. [10] and references therein for a more detailed
discussion of relevant carbonate chemistry and spe-
ciation.

In addition to removing carbon, ERW can sup-
port soil health and crop yields. The dissolution
of silicate materials neutralizes soil acidity and in-
creases soil pH, which is often essential to avoid re-
duced crop yields on intensively farmed agricultural
land [28]. In this capacity, silicate feedstocks replace
more commonly used agricultural lime. Silicate min-
erals may also contain appreciable amounts of potas-
sium, an important nutrient for plant growth, and a
range of plant micronutrients. The combined effects
of carbon removal, soil pH regulation, and nutrient
supply constitute a strong argument for ERW.

Quantifying the amount of atmospheric carbon re-
moved by ERW reliably, cheaply, and accurately is
critical for our understanding of its carbon removal
potential and commercial viability. In the commer-
cial setting, the whole process of CDR quantification
is usually called measurement, reporting, and verifi-
cation (MRV). Because ERW takes place in diverse
natural soils, occurs over large areas, and involves
complex chemical reaction networks, MRV is hard.
It requires well-designed data collection plans, care-
ful operations in the field, laboratory analysis with
consistently high standards, competent data man-
agement, and rigorous statistics. Given the scope
of the problem and the variety of possible ways to
approach MRV, there isn’t yet a clear consensus on
how best to quantify CDR in ERW.

Importantly, because the products of silicate
weathering reactions persist for a long time and may
participate in further reactions far away from the
original location, MRV is primarily concerned with
the initial CDR: that which takes place upon feed-
stock dissolution in the top layer of amended soil.
This document focuses entirely on initial CDR and
its quantification. Downstream loss of removed car-
bon and its uncertainty is accounted for with mod-
els, which suggest a relatively small impact [30], but
this is also an active area of research.

Several different approaches to MRV in ERW have
been explored. Here, we address one promising
group of approaches: mass-balance methods.

• In Section 2, we review fundamental concepts
of mass-balance MRV and discuss the strengths
and weaknesses of different variations on the
core mass-balance approach. We focus mainly
on tracer methods because some assumptions
are not always obvious and some important
caveats have been overlooked.

• In Section 3, we review some best practices and
suggest ways of avoiding bias and error as dif-
ferent MRV ideas are tested.

• In Section 4, we present a software package [1]
designed specifically to facilitate tasks like sam-
ple planning, uncertainty analysis, power anal-
ysis, and statistical validation in mass-balance
MRV. To demonstrate the package’s core func-
tionality, we perform sensitivity analyses on
soil-feedstock mixing scenarios.

• In Section 5, we briefly review some approaches
to CDR estimation and review some advan-
tages of Bayesian modeling for mass-balance
MRV. Then we describe and fit a demonstra-
tion Bayesian model using simulated data from
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our new package. We show that the model re-
covers the correct answer for CDR, in addition
to other information.

• Finally, in Section 6, we review some of the
main points in previous sections and conclude.

This is a practical document focusing on how to
calculate initial CDR using mass balance methods.
It is partly a review of existing research, partly an
explanation of some overlooked components of mass-
balance methods, partly a resource for building in-
tuition, and partly a presentation of new computa-
tional tools for MRV in ERW. It is addressed pri-
marily to researchers and commercial practitioners
in ERW, but also organizations seeking to develop
standards and protocols for carbon crediting. This
document is not, however, an assertion that any in-
dividual protocol for MRV is optimal. It also does
not address every component of ERW science com-
pletely. In particular, the details of silicate weath-
ering reactions, carbonate chemistry, and life cycle
analysis are not addressed here.

2 Mass-Balance MRV

Initial carbon dioxide removal by enhanced rock
weathering is driven by the reaction of carbonic acid
with silicate minerals to produce bicarbonate anions
and base cations. To quantify initial CDR in ERW,
we have to observe a causal relationship between
feedstock application and one or more of the follow-
ing:

• increased net CO2 flux from the atmosphere to
the soil

• elevated bicarbonate concentration in soil pore-
water

• faster dissolution and leaching of base cations
(mass-balance)

Each of these measurement targets has strengths
and weaknesses.
Measuring net CO2 is a very direct way to quan-

tify CDR because removing CO2 from the atmo-
sphere is the ultimate goal. It requires no further
assumptions about weathering reactions. However,
gas phase measurements require continuous opera-
tion of well-controlled sensing apparatuses with very
high temporal resolution [19]. This method may be
useful in laboratory and mesocosm experiments but
is very unlikely to be widely deployed.
Bicarbonate measurement is also relatively direct

but is similarly difficult to perform at scale. Aque-
ous phase measurements require frequent collection

of leachate from amended soils and leachate collec-
tion is a laborious task, requiring the installation
of either suction lysimeters coupled with estimates
of precipitation and evapotranspiration or expensive
gravity lysimeters that disturb the soil [13].

Measuring feedstock dissolution and leaching
only requires occasional collection of samples from
amended soil, a practice that is familiar to most
farmers, who test soil properties like acidity and nu-
trient availability. These samples can be digested
and analyzed for elemental composition in a central-
ized, off-site laboratory. However, these measure-
ments ultimately require assumptions about which
chemical reactions occur and how much carbon is
brought into solution by feedstock dissolution.

There are several possible ways to measure feed-
stock dissolution and leaching, collectively called
“mass-balance” methods [7]. The goal of any mass-
balance method is to estimate the mass of cations
dissolved from applied feedstock as a proxy for bi-
carbonate production and CO2 removal. Doing so
requires, at minimum, information about:

1. The mass of feedstock cations in the soil after
adding feedstock to soil

2. The mass of feedstock cations in the soil after
a period of weathering

The difference between these masses is the loss of
cations from feedstock. Importantly, cation mass is
only “lost” if it both dissolves from feedstock and
leaches into deeper soil, where it is no longer within
the sampling depth.

Cation mass losses are generally converted to ini-
tial CDR by assuming two moles of bicarbonate are
brought into solution for every mole of dissolved
divalent cations (usually calcium and magnesium)
and one mole for every mole of dissolved monova-
lent cations (usually sodium and potassium). Then,
the mass of removed CO2 is calculated using a 1:1
ratio between moles of bicarbonate produced and
CO2 removed. In particular, for known masses of
cations dissolved from silicate feedstock, the mass
conversion formula is:

CO2 = 3.62Mg + 2.2Ca + 1.91Na + 1.12K . (1)

For example, one kilogram of magnesium dissolved
from feedstock implies 3.62 kilograms of initial
CDR. This is sometimes expressed differently, with
oxides, more elements, and various loss factors, and
called the Steinour Formula [23], but it’s fundamen-
tally a molar mass conversion. The conversion itself
represents the maximum amount of carbon initially
removed by the dissolution of feedstock in soil. As
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mentioned above, subsequent evasion and its uncer-
tainty must also be considered, along with emissions
caused by operations, to estimate net CDR.
Measuring the difference in feedstock cation

masses over time can be done in many ways, but
there are two categories of methods: tracer methods
and cation stock methods. Below, we explain the
methods in each category and discuss their strengths
and weaknesses.

2.1 Tracer Methods

Tracer methods take advantage of the relative sta-
bility of different silicate minerals and their chemical
compositions. For example, “high field strength ele-
ments” like zirconium or titanium tend to be concen-
trated in minerals that resist chemical weathering
(zircon, for example). A considerable amount of in-
formation about long-term soil development can be
inferred by assuming these minerals are not broken
down over time and the masses of their elemental
constituents are conserved in a given section of soil.
For example, we assume zirconium mass is conserved
over time, acting as a passive “tracer” element dur-
ing pedogenesis (soil development) and weathering.
Elements like calcium and magnesium, which are
generally much more soluble, are “mobile” elements
compared to tracers.
Although inspired by research on natural weather-

ing and pedogenesis, tracer methods for ERW have
been approached slightly differently. In landmark
pedogenesis studies, the composition of a parent
rock is approximately known, and tracer elements
are used to infer changes in the volume of soil layers
as the parent rock transitions into a soil [6, 5]. For
ERW, in contrast, tracers have been used to infer the
mass of feedstock originally added to soil samples.
In effect, they have been used to reconstruct the
composition of the parent material itself—soil com-
position immediately after applying feedstock [22,
21, 2, 14]—without measuring it directly after feed-
stock spreading.
To further explain, tracer methods in ERW have

mainly relied on two groups of soil samples in ad-
dition to feedstock samples. The first group of soil
samples is taken before feedstock is applied and the
second is taken some time after weathering has oc-
curred. For example, the first group might be col-
lected one week before spreading and the second
group one year after spreading (Figure 1). All sam-
ples are analyzed for chemical composition, record-
ing the mass concentrations of mobile cations and
tracer elements1.

1Typically, samples are prepared for analysis by drying,

time

Feedstock
spreading

Sampling 
round 1

Sampling 
round 2

Figure 1: A simple timeline showing sampling rounds
before feedstock application and after some period of
weathering.

To summarize, the three groups of measurements
are:

1. feedstock concentrations (f)

2. soil concentrations before spreading (s)

3. soil concentrations after weathering (w)

We assume that none of the tracer element’s mass
is lost from the soil and that the concentration of a
tracer element immediately after applying feedstock
is the same as when it’s measured a year later. A
simple mixing equation describes the concentration
of an element in the feedstock-soil mixture,

wt = αft + (1− α)st (2)

where α is the mass of feedstock mixed into the soil,
in units of mass per mass, or the “mixing fraction.”
The subscript t indicates the concentrations refer to
an immobile tracer element.

Note that the mixing equation above is just a
mass-weighted average. It’s derived by starting from
the masses of each material. If we mix feedstock
mass F and soil mass S with elemental concentra-
tions ft and st, we have a mixed mass W with some
concentration wt,

Wwt = Fft + Sst . (3)

Rearranged,

wt =
F

W
ft +

S

W
st . (4)

pulverization, and digestion. Drying and pulverizing are im-
portant for homogenization of the sample, but also to opti-
mize particle size, typically smaller than 75 um in diameter,
for complete digestion. The two primary methods of diges-
tion are lithium borate fusion or total-acid (sometimes called
four-acid) digestion. Samples are then analyzed by X-ray flu-
orescence (XRF), inductively coupled plasma optical emission
spectroscopy (ICP-OES), inductively coupled plasma mass
spectrometry (ICP-MS), or a combination of these methods.
Feedstock chemical composition is also analyzed in the same
way.
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The fraction F/W is the amount of feedstock mass
per unit total mass in the mixture. By definition,
this is the mixing fraction α, and

wt = αft +
S

W
st . (5)

If no mass is lost, then W = S + F . The total
mass is just the sum of the soil and feedstock masses.
Or, equivalently, S = W − F .

wt = αft +
W − F

W
st (6)

= αft +

(
1− F

W

)
st (7)

= αft + (1− αt)st (8)

This is where the simple mixing equation comes
from. Rearranging, the mixing fraction is

αt =
wt − st
ft − st

. (9)

The same mixing algebra applies to any mobile
element m,

αm =
wm − sm
fm − sm

. (10)

However, for a mobile element, the mixing fraction
αm typically records the soil’s state after some pe-
riod of weathering. If all of the feedstock mobile
element has been lost, αm ≈ 0 because wm ≈ sm.
If none of the feedstock mobile element has weath-
ered away, then αm = αt. The ratio of mixing frac-
tions, αm/αt, indicates how much of the feedstock
mobile element m is present in the soil as a fraction
of the amount that was originally added to the soil.
This is how tracers can be used to estimate cation
losses without measuring their concentrations imme-
diately after spreading. The tracer mixing fraction
αt records the initial amount of feedstock added to
the soil and the mobile element mixing fraction αm

records cation loss by comparison with αt.

2.1.1 Dissolution Fraction

The relationship between mobile and immobile mix-
ing fractions leads to a dissolution fraction d,

d = 1− αm

αt
= 1− ft − st

wt − st

wm − sm
fm − sm

, (11)

which is the fraction of the feedstock mobile element
m lost from the sampled soil in units of mass per
mass. The expression in Equation 11 can, theoreti-
cally, be used to estimate CDR from measurements
of each variable. The dissolution fraction for each

feedstock cation is multiplied by the mass of the el-
ement applied in feedstock, yielding the total mass
of the cation lost to weathering, which is then used
in Equation 1 to compute CDR. Note that there is
no need to formulate a system of linear equations to
compute the dissolution fraction and (as discussed
below) statements of mass conservation in this con-
text [22] are misleading and must be qualified.

2.1.2 Tracer Differencing

Instead of computing a dissolution fraction, tracers
can also be used to infer the difference in mobile ele-
ment concentrations due to weathering. If feedstock
is applied to soil with mixing fraction α, then imme-
diately after spreading, the combined concentration
of mobile element is

αfm + (1− α)sm . (12)

If we subtract the observed post-weathering concen-
tration,

αfm + (1− α)sm − wm , (13)

then we have an expression for how much a mobile
element’s concentration decreased because of disso-
lution and leaching. Then, to compute CDR, fur-
ther assumptions or measurements of density and
depth are required because the expression above is
a change in cation concentration, not mass.

2.1.3 Comments & Caveats

The primary practical strength of tracer methods is
that they automatically account for the amount of
feedstock added to the observed soil without observ-
ing soil concentrations immediately after spreading,
even after multiple rounds of spreading. From that
estimate of total feedstock application, we can fur-
ther estimate the expected concentration of mobile
elements if no feedstock weathering occurred. Then,
observed mobile element concentrations are com-
pared to that estimate. For the dissolution fraction,
mobile element loss is normalized by its enrichment
from feedstock addition. Alternatively, the concen-
tration gap is directly converted to a total mass
loss using additional information (“dissolution dif-
ference”).

There are, however, some important caveats to be
aware of when using tracer methods for MRV. Some
of them have not been fully acknowledged in prior
work.

First, the denominator of the first fraction in
Equation 11, wt − st, can cause severe estimation
problems. Natural variability in soil concentrations
and imperfect laboratory measurements can cause
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wt and st to be poorly separated. The difference
wt − st can, just by chance, be very close to zero,
making the first fraction very large and blowing up
the dissolution fraction. It’s also possible for the dis-
solution fraction to be negative or greater than one,
outside the expected physical interval. The prob-
ability of these unexpected/outlier dissolution frac-
tions increases as wt and st become noisier and if the
feedstock is poorly enriched in the tracer element.

However, an important qualification to remember
when confronting real data is that dissolution frac-
tions /∈ [0, 1] do not necessarily represent unphysical
results. Although they could be caused by unknown
sources of error, it’s more likely that they are caused
by natural variability and noise, which will always be
present in each term of Equation 11. With enough
variability, too few samples, and/or unwise analysis
choices, values of the dissolution fraction that can’t
be physically justified are likely to appear. However,
noisy results never justify discarding data or clamp-
ing dissolution fractions for sample pairs between
zero and one [22], which introduces bias. Dissolu-
tion fractions outside [0,1] probably indicate some
combination of noisy data, a badly behaved esti-
mand, and insufficient experimental planning, not
unphysical behavior.

Figure 2 demonstrates how seemingly unexpected
dissolution fractions arise from realistic levels of
variability in soil concentrations, using the mixing
triangle visualization explained in Reershemius et
al. [22] and elsewhere. We assume a feedstock with
mobile element concentration of 5 % and a tracer
concentration of 1000 ppm (by mass). Baseline soil
has a mobile element concentration of 0.2 % and a
tracer concentration of 200 ppm. Feedstock is mixed
into soil with a mixing fraction of 2 % and we as-
sume 50 % of the mobile element has dissolved and
leached out of the feedstock.

The top panel of Figure 2 shows feedstock and soil
end members with the weathered mixture’s expected
concentration in between. For realistic mixing frac-
tions like 2 %, mixed concentrations (after spread-
ing and weathering) are very similar to baseline soil.
The concentration signals from feedstock addition
and weathering are small. The middle panel zooms
in on the same baseline and mixed coordinates but
includes 50 random points with 10 % relative vari-
ability in both the tracer and mobile concentrations
of the mixture (normally distributed). This variabil-
ity represents everything from natural soil hetero-
geneity to measurement error and 10 % is a realistic
(arguably optimistic) value.

The variability causes sampled points to stray
significantly outside the mixing triangle, producing

Figure 2: The mixing triangle visualization commonly
used for mass-balance tracer methods. See Reershemius
et al. [22] for a full explanation. Top: Feedstock, base-
line soil, and mixed soil coordinates on the tracer-mobile
plane. With a realistic mixing fraction like 2 %, mixed
concentrations are very similar to baseline concentra-
tions. The mixed coordinate is very close to the left cor-
ner of the triangle. Middle: The same mixing triangle,
but zoomed in and with 50 points representing random
draws of the mixed concentrations with 10 % overall
relative variability (in red). Bottom: A histogram of
the dissolution fractions corresponding to the randomly
drawn points in the middle panel and the mean of these
dissolution fractions.
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dissolution fractions that would naively be consid-
ered “unphysical” but are straightforward results of
common heterogeneity and noise. The lowest panel
shows a histogram of the dissolution fractions cor-
responding to the sampled points. For this example
(50 points), almost half of the points are outside the
triangle, some dissolution fractions are significantly
outside the [0,1] interval, and the average dissolution
itself is also outside the expected interval. These
unexpectedly large values are a consequence of the
ratios in Equation 11. If the denominator wt − st
is near small or near zero because of variability and
noise, the dissolution fraction will be unexpectedly
large. Outlier dissolution fractions can cause the av-
erage dissolution fraction to be outside the expected
interval without a more careful approach.

Moving on from the dissolution fraction, another
important issue is that the mixing algebra in section
2.1 assumes conservation of mass. This directly con-
tradicts the expectation that mobile elements like
calcium and magnesium leave the feedstock-soil mix-
ture during weathering, which is why αt and αm are
not equal in the first place. Other bulk elements,
like silicon and oxygen, may also leave the mixture
as weathering proceeds. The bias introduced by this
violation can theoretically be corrected for, as Reer-
shemius et al. [22] explore, but correction requires
an accurate understanding of the total change in
feedstock mass, including all elements, which is dif-
ficult and introduces more uncertainty, but could be
worth pursuing. The magnitude of the bias depends
mainly on how enriched a tracer element is in feed-
stock compared to soil. More enrichment is always
better and further analysis of this issue indicates
that tracers should be roughly an order of magni-
tude more concentrated in feedstock than baseline
soil for tracer methods to avoid bias.

Further analysis also shows that dilutive tracers,
where the concentration of a tracer element is lower
in feedstock than in baseline soil, always introduce
unacceptable levels of bias when using the standard
tracer approach shown in Figure 1 (also see related
criticism by Reershemius and Suhrhoff [20]). Dilu-
tive tracers rely on concentration changes induced
by the addition of bulk feedstock mass, which is gen-
erally a very small signal that is severely biased by
the subsequent loss of that mass as weathering pro-
ceeds. As such, dilutive tracers should never be
used when only pre-spreading and post-weathering
samples are available because they don’t function as
tracers in this context.

Another important point concerns the use of mul-
tiple tracer elements simultaneously, to improve esti-
mates of αt and ultimately CDR. This is a good idea

Figure 3: A representation of the mixing regression
used in Kantola et al. [14], where the slope of this zero-
intercept linear regression is used as an estimate for
αt. Measurements for Ce, Nd, and La dominate the
regression because the intercept is assumed to be zero
and most REEs have much lower concentrations. Low-
concentration REEs have almost no effect on the regres-
sion, in this case, and are effectively ignored.

if multiple immobile elements are enriched enough
in feedstock to be well separated from baseline soil
concentrations, but care must be taken. Kantola
et al. [14] attempted a multiple-tracer mass-balance
calculation using REEs, with an approach closely re-
lated to “tracer differencing” (Section 2.1.2). They
used zero-intercept linear regression to estimate the
mixing fraction αt, then computed cation concentra-
tion changes due to weathering and finally converted
those concentration changes to CDR using the den-
sity and depth.

However, among other very serious issues [20],
Kantola et al. [14] do not appropriately scale tracer
element concentrations before regression. In their
observations, some REE concentrations are natu-
rally much lower than others. Holmium, for exam-
ple, is much less abundant in their materials than
cerium. Consequently, low-concentration elements
have almost no weight in the regression. Figure 3
shows the data and the resulting zero-intercept re-
gression with a 95 % confidence interval. The re-
sult depends almost entirely on the values for Ce,
Nd, and La, effectively ignoring most others. A bet-
ter approach, instead of regression, is to incorporate
multiple tracers into a unified probabilistic model
or average appropriately across mixing fraction esti-
mates for each tracer (avoiding differences in scales).

Finally, it’s not clear why pre-spreading sam-
ples (Figure 1) have seemingly always been viewed
as preferable to post-spreading samples (Figure 4)
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Feedstock
spreading

Sampling 
round 1

Sampling 
round 2

Figure 4: A simple timeline showing sampling rounds
after feedstock application and after some period of
weathering.

when using tracer methods. In the commercial set-
ting, there may be operational reasons to compro-
mise and choose one or the other. However, in con-
trolled trials, the experimenter has much more flex-
ibility. In the post-spreading approach, tracers can
be used as a control on changes in density and vol-
ume, much like the calculations made in early pedo-
genesis studies [6, 5].
Although it makes statistical analysis more in-

volved, it would be even better to sample before
and after spreading (Figure 8), in addition to after
weathering. Section 5.3 gives an example of one way
to approach CDR quantification with samples before
and after spreading, using Bayesian inference.

2.2 Cation Stocks

A practical weakness of tracer methods is that feed-
stock must be significantly enriched in at least one
tracer element compared to the baseline soil (gen-
erally by an order of magnitude), and this is not
always the case. Without a sufficiently high tracer
concentration in feedstock, tracers provide a weak
mixing signal and CDR results are vulnerable to
bias due to mass loss from weathering. An alter-
native approach is to ignore tracer elements and es-
timate changes in cation stocks (total mass) over
time. This can be done for two points in time or, if
measurements are taken more than two times after
spreading, by estimating or inferring the parameters
of a time-dependent weathering curve.
Focusing only on cation stocks is conceptually

simple and statistically straightforward compared to
tracer methods. It’s also closely related to soil or-
ganic carbon (SOC) practices, where changes in soil
carbon stock are monitored over time, and much of
the SOC literature is directly analogous to tracking
cation stocks. In ERW, however, we are generally
accounting for multiple cations simultaneously and

we have a strong prior understanding of whether
cation concentrations should increase or decrease
over time, both of which can be statistical advan-
tages. From that point of view, cation stock moni-
toring in ERW is like an easier variant of SOC mon-
itoring.

At a minimum, to estimate changes in cation
stocks due to weathering, samples are taken soon
after spreading and then after weathering has pro-
gressed (Figure 4). Samples are analyzed for concen-
trations of major cations, along with bulk density,
and the difference in each cation stock is used to
estimate CDR. There are three main advantages to
this approach.

1. Changes in cation stocks are what we want to
know. Tracer measurements are a means to
that end but are not fundamentally necessary.

2. Feedstock material is selected specifically be-
cause of very high concentrations of base
cations, typically Ca and Mg. This makes
changes in these concentrations after feedstock
application, and subsequent weathering signals,
large and relatively easy to observe. Unlike
tracer elements, there is no scenario in which
a feedstock has low concentrations of relevant
cations because that would make it unsuitable
for ERW and it would not be deployed.

3. Major cations can be cheaper to measure than
tracer elements, an important factor for the
scalability of MRV.

There are also some disadvantages to cation stock
monitoring. In particular, sample depth must be
consistent. For example, imagine feedstock is only
mixed into the top 5 cm of soil and the first round
of samples is 5 cm deep. If the next round of sam-
ples is 10 cm deep, cation concentrations will appear
to decrease even if no weathering occurred, just be-
cause the amount of background soil in each sample
has roughly doubled. However, all of these disad-
vantages can be addressed by controlled and precise
sampling operations.

2.3 Signal Size

The sections above discuss mass-balance MRV in the
abstract. Before discussing simulation and statis-
tics, it’s useful to consider some simple, concrete
examples of how feedstock application and weath-
ering influence soil concentrations. Concentration
changes in soil are the quantities of primary inter-
est for mass-balance methods and having some intu-
ition for the expected magnitudes of these changes
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is useful when designing simulations and discussing
statistical methods.

Assume that a hypothetical feedstock has 6 % cal-
cium by mass. Before feedstock is spread, the base-
line soil has 0.5 % calcium by mass (5000 ppm).
These are representative numbers, but real condi-
tions vary. We spread 10 short tons of feedstock per
acre on the soil, or about 2.25 kg/m2. Soil samples
are taken after feedstock spreading to 15 cm depth
and the soil itself has a bulk density of 1000 kg/m3.

In this scenario, the mixing fraction α (the mass
of feedstock per unit mass of soil-feedstock mixture)
is 1.48 %. The calcium concentration of the mixed
feedstock and soil is about 800 ppm higher than the
baseline soil before any weathering occurs. This 800
ppm change is roughly the size of the “signal” that
must be observed to quantify concentration changes
relevant to this hypothetical scenario. That is, to
detect the addition of feedstock at all, even right af-
ter spreading, we need enough statistical precision
to detect an average 800 ppm change between base-
line and post-spreading samples (for this scenario).

To resolve weathering over time, we need even
more precision. For example, to observe 50 % loss
of calcium from the feedstock would require accurate
resolution of, roughly, 400 ppm changes in soil con-
centration. To observe only a 10 % loss requires ac-
curate estimation of concentration changes around
80 ppm in magnitude (depending on the method
used). If percentages are more intuitive, the 800
ppm calcium enrichment after spreading feedstock
constitutes a 16 % enrichment and the 80 ppm
weathering signal is a 1.6 % change from baseline.

A reasonable generalization is that mixing frac-
tions between 0.5 and 5 % are typical and concentra-
tion signals of around 100-1000 ppm are the obser-
vational targets for mobile cations in mass-balance
MRV. However, conditions and statistical goals vary,
and the strength of the signal is only meaningful in
comparison to the size of background variability and
noise.

Tracer elements (Section 2.1), however, may not
be as highly enriched in feedstock as mobile ele-
ments, compared to soil. If a tracer element is
present in feedstock at 200 ppm and in baseline soil
at 100 ppm, the concentration change immediately
after spreading is about 1.5 ppm (1.5 % enrichment)
in this hypothetical scenario. Whatever the sam-
pling and analysis plan is in this case, it will have
to accurately resolve changes in this element around
1.5 %. With many sources of natural variability in
soil and limited measurement precision, this may or
may not be practical.

2.4 Variability & Noise

Mass-balance MRV methods for ERW are primarily
focused on changes in elemental concentrations over
time, in soil. Sometimes we also need more infor-
mation like sampling depth and bulk density. There
are many sources of variability challenging our abil-
ity to precisely measure concentration changes and
CDR in ERW. They include

• Naturally heterogeneous soil concentrations.
Most soil is far from a homogeneous soup of
elements, but has variable concentrations of
cations and tracer elements on a range of spatial
scales, in addition to variable bulk density and
other characteristics like slope and drainage.

• Nonuniform spreading of feedstock. Feedstock
is inevitably applied with some level of spa-
tial variability and never as a perfectly uniform
sheet over treatment soil.

• Treatment area. Although generally well-
controlled, the exact boundaries of amended
soil can be uncertain.

• Feedstock composition. Although generally
consistent, the concentrations of elements in the
applied feedstock can and do vary.

• Sample depth. Because feedstock is not uni-
formly mixed into a layer of soil with known
depth, the sampling depth does influence sam-
pled concentrations.

• Real variability in the weathering rate. Nothing
prevents the true dissolution rate of feedstock
cations from varying, even in a single field. To
some extent, this is expected.

All of this variability in the field precedes a second
layer of noise in the laboratory, where sample han-
dling, preparation, and analysis introduce more im-
precision. Laboratory practices and analytical tech-
niques vary and laboratory quality control is a vast
topic, but some of the major sources of noise and
error relevant to mass-balance are:

• Sample splitting. Typically, a mass of soil is
dried and pulverized, then a small portion is
split from the bulk sample for further prepa-
ration and analysis. The splitting process can
introduce errors if the material is segregated
and poorly homogenized. This is especially true
if sample compositing and splitting take place
in the field, where homogenization is hard to
achieve.
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• Sample preparation. There are a host of possi-
ble errors introduced by further sample prepa-
ration. Examples are imprecise weighing, in-
complete digestion, contamination, and confus-
ing one sample for another.

• Analysis. All instruments are subject to some
level of noise.

Mass-balance MRV methods must be able to see
weathering signals through all these sources of vari-
ability, error, and noise by averaging over them.

3 Planning Experiments

There are many possible ways to do mass-balance
MRV for ERW. Experimenters and practitioners
have to decide when to pull soil samples, where to
collect them, how many to take, how many indi-
vidual cores to composite for each sample (if any),
and which quantities to measure when the samples
are in hand. They have to decide whether tracer
elements should be used and which elements are
tracers. They have to decide how to handle con-
trol/treatment groups. Ultimately, initial CDR has
to be computed from some set of observations, some-
how.
Ideally, these decisions are made based on

1. an informed understanding of variability and
noise in the field and laboratory

2. the desired statistical precision or confidence of
the result

3. clear, pre-documented understanding of exactly
what data will be collected and what specific
analyses will be performed with the data: a
stated plan and an estimand

However, there has been a general lack of rigorous
planning in ERW research. Here are just a few ex-
amples from mass-balance studies.
Reershemius et al. [22] performed replicated meso-

cosm experiments to measure weathering rates in a
controlled setting, but only took one baseline soil
measurement for the whole group of replicates, mak-
ing it impossible to account for baseline variability
across replicates and measurement error in the in-
dividual baseline. Kantola et al. [14] used a set of
REEs as tracer elements for CDR quantification, but
almost all of the candidate tracers were insufficiently
enriched in feedstock and, in some cases, less abun-
dant in feedstock than in soil, making them unsuit-
able. These authors also group and average their

data in surprising ways without persuasive justifica-
tion (see also comments in Section 2.1.3 and criti-
cism by Reershemius and Suhrhoff [20]). Using the
same samples from the same trial as in [14], Beerling
et al. [2] split samples into two sections by depth and
state that almost half of the applied feedstock was
mixed into the lower layer. Analysis of these deeper
samples is then omitted, without explanation, and
the authors extrapolate results from the upper layer
to the lower one, claiming that this state of igno-
rance is the “conservative” choice.

Experiments and field trials are difficult and
sometimes messy, but there is a need to more rig-
orously inform and justify choices like sample size,
sample timing, and sample depth. The experimen-
tal plan and analysis plan should be formulated and
tested before the experiment, not after, to discover
and address problems that are impossible to correct
later on (like too few baseline samples and bad trac-
ers). Decisions in data analysis, like which groups
of samples to use and how to average across groups,
should be made during the planning process, not af-
ter reviewing final data. Researchers should avoid
calculating results with different slices or groups
of data, presenting the individual result that looks
best according to preconceptions, and coming up
with post hoc explanations for their choices, as this
straightforwardly introduces bias.

There is also a need to validate statistical meth-
ods used to estimate CDR. This can be difficult
in complex media like soil and with complex sam-
pling plans. However, demonstrating that statistical
methods and their implementations are even capable
of reliably producing the correct answer is critical
to continue building an empirical understanding of
weathering rates for ERW.

The section below explains how to simulate and
understand hypothetical deployments or experi-
ments before carrying them out, to minimize the
risk of errors and omissions, then presents a pub-
licly available software package for application to
mass-balance methods in ERW. Later on, we show a
mildly simplified example initial CDR quantification
using Bayesian inference.

4 Simulation

A robust and flexible way to understand the com-
bined effects of experimental design and variabil-
ity/noise is to simulate the data generating process
[18]. In this approach, we assume an experimen-
tal design and prescribe probability distributions for
relevant physical and chemical parameters. Then
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we simulate from these assumptions. We draw ran-
dom realizations of our experimental plan and physi-
cal parameters jointly, generating synthetic datasets
with randomness representative of real conditions.

In the context of mass balance for ERW, we draw
realizations of soil samples in space and time, along
with realizations of feedstock and soil parameters,
producing complete sets of simulated geochemical
data. The hypothetical datasets generated by this
Monte Carlo approach are representative of real
MRV datasets produced by field trials or commer-
cial deployments and can be used in a number of
important ways.

1. Understanding the system. Modeling different
experimental designs and physical conditions
forces us to think about which parameters are
relevant, how they vary, and why. It can also
expose overlooked sources of variability or in-
teractions between parameters.

2. Uncertainty analysis. Simulated datasets di-
rectly address questions about how variability
in physical parameters contributes to uncer-
tainty in the final statistical result. We can
simulate datasets with different levels of vari-
ability, feed them into a statistical method of
choice, and see how uncertainty in our results
corresponds to variability in the parameters.

3. Statistical validation. Simulated data is pro-
duced by a forward model for which we know
the correct answer unambiguously. For mass
balance, we know how much feedstock dissolved
and leached for all simulated datasets because
we prescribe the model parameters. To validate
statistical methods, we feed simulated datasets
into our methods and check that they can re-
cover the correct answer, on average. We can
also evaluate whether a statistical method pro-
vides an accurate representation of uncertainty.
For example, if we are using 90 % confidence
intervals to evaluate uncertainty, we can check
directly that our intervals contain the correct
(known) answer for about 90 % of simulated
datasets.

4. Power analysis. Synthetic data can be used to
choose an appropriate number of samples based
on a desired level of statistical precision. To do
so, we can make cautious assumptions about
variability and noise, simulate datasets with dif-
ferent sample sizes, and see how many samples
are required to achieve the desired level of pre-
cision for the statistical method we plan to use

for real data. Although not perfect, this ap-
proach is far better than the common strategy
of guessing.

All of these tasks involve the same general process.
Simulated datasets are the joint products of sam-
pling choices and natural variability/noise and can
be analyzed as if they were real datasets to answer
questions about how sampling choices and variabil-
ity affect the analysis. This includes complications
like control samples, many rounds of sampling, lab-
oratory error, composite sampling, and so on. Sim-
ulations can guide sampling choices and statistical
practice.

4.1 Monty

We present a software package for performing the
simulations described above in the context of mass-
balance MRV for ERW, called Monty (a reference to
the Monte Carlo approach). The package is written
in the Julia programming language [4]. The cen-
tral element of the package is a deterministic mixing
model that describes how the elemental concentra-
tions and mass of an individual soil core are deter-
mined by relevant physical and chemical parame-
ters. On top of this model is a set of functions for
defining sampling plans and the variability of mixing
parameters like baseline soil concentrations, applica-
tion rates, etc.

First, we describe this mixing model in detail, be-
fore highlighting some other useful aspects of the
package. Other details are left to the online docu-
mentation, where there are also examples showing
how to use the primary components of the package.
In addition to the documentation, the package is
thoroughly tested and profiled.

4.1.1 Deterministic Mixing Model

To simulate the mixing of baseline soil and weath-
ered feedstock in an individual soil core, the model
assumes a vertically homogenous layer of baseline
soil. This soil is characterized by the bulk den-
sity (ρs) and concentrations of key elements in the
soil (cs). Any number of elements can be included.
Feedstock is added to this layer according to an ap-
plication rate (Q) and mixed vertically into the soil
according to a mixing profile (Γ) represented by any
arbitrary, non-negative probability distribution so
that the integral of the profile over infinite depth is
always equal to one (original feedstock mass is not
lost). The feedstock has prescribed elemental con-
centrations (cf ) and can have a nonzero bulk density
(ρf ) so that it occupies vertical space in the soil.
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Over time, elements can be dissolved and leached
out of the feedstock, with each element assigned a
monotonically increasing (or flat) loss fraction (l) for
all points in time. In addition to the loss of specific
elements, some of the bulk feedstock mass is also
lost over time, represented by a total mass loss frac-
tion (L). A soil core is taken from this mixture with
some depth (d) and cross-sectional area (a).
The elemental concentrations of the soil core are

determined by adding the masses of each element in
soil and feedstock then dividing by the total mass.
The fraction of original feedstock present in the soil
core (γ) is determined by the feedstock mixing pro-
file and the depth of the core,

γ =

∫ d

0

Γ(x)dx . (14)

The total mass of feedstock in the core is

Mf = Qγ(1− L) , (15)

which accounts for the feedstock mass loss fraction,
L. The vertical space occupied by the sampled feed-
stock is

h = MF /ρf . (16)

The mass of each element of interest in the core
located in feedstock (mf,i), per unit area, is

mf,i = Qγ(1− li)cf,i (17)

The total mass of soil in the core, per unit area,
accounting for space occupied by feedstock, is

Ms = ρs(d− h) , (18)

and the mass of each element of interest in the core
from the baseline soil, also per unit area, is

ms,i = ρs(d− h)cs,i . (19)

The total mass of the core is

M = Mf +Ms = Qγ(1− L) + ρs(d− h) (20)

and the concentrations of each element in the soil
core (per unit area) are computed by adding up each
element’s mass and dividing by the total mass,

ci = (mf,i +ms,i) /M (21)

=
Qγ(1− li)cf,i + ρs(d− h)cs,i

Qγ(1− L) + ρs(d− h)
. (22)

This is a physically consistent, although moderately
simplified, representation of the concentration and
mass of an individual soil core. The model assumes

feedstock is mixed into a vertically homogeneous
layer of soil and feedstock loses cations to weath-
ering at prescribed, depth-independent rates. Loss
rates can be different for each element. Table 1 or-
ganizes all mixing model parameters and their SI
units.

A key aspect of this simple model is the prescribed
loss fractions li. This is how the correct answer, with
respect to weathering rates, is known when synthetic
data is eventually generated. We prescribe the func-
tions li(t) and know exactly what the loss rates are.

4.1.2 Composite Sampling

It’s common practice in agricultural and soil sam-
pling to physically combine individual soil cores into
a single sample, which is then homogenized and an-
alyzed. This practice averages over the variability
of individual cores, but increases the importance of
laboratory noise by decreasing the number of indi-
vidual measurements. On this topic, much can be
learned from the SOC literature (see Spertus [25]
and references therein).

Monty makes it very straightforward to model soil
core compositing. From the mixing model in Sec-
tion 4.1.1, each soil core is represented by the total
mass of soil and the concentration of each element
of interest. Compositing one or more cores means
taking the mass-weighted average of each element’s
concentration. In Monty this is done using the addi-
tion operator/function (+). To composite samples,
they are simply added together, and any number of
cores can be composited by summing them (the sum
function).

The package also implements a number of com-
mon compositing “stencils,” which are spatial pat-
terns of the individual soil cores that are combined
into a single composite sample. Although some the-
oretical statistical work is based on compositing ran-
dom groups of cores for an entire field, this is almost
never done in practice. Much more commonly, some
number of cores are taken at individual sample lo-
cations and composited immediately. This practice
averages over short-distance variability. An exam-
ple of automatic stenciling and compositing is shown
later in Section 5.3.

4.1.3 Spatial Covariance

A primary area of focus for mass-balance MRV is
the natural spatial variability of elemental concen-
trations in soil, although it has been overlooked in
some prior work. For example, one line of research
[21] posited that 1 % analytical precision (relative
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Γ(d) kg/kg feedstock mixing profile, a non-negative probability distribution de-
scribing the vertical distribution of feedstock mass mixed into the soil

d m sample depth

γ(d) kg/kg the fraction of original feedstock mass mixed into the soil collected by
a soil core, computed via the CDF of Γ and the sample depth d

a m2 soil core cross-sectional area

Q kg/m2 feedstock application rate

ρf kg/m3 feedstock bulk density as it exists in the soil-feedstock mixture

cf,i kg/kg feedstock concentration of element i

ρs kg/m3 soil bulk density

cs,i kg/kg soil concentration of element i

li kg/kg loss fraction of element i from feedstock

L kg/kg loss fraction of all feedstock mass

Table 1: Parameters (inputs) used in the Monty mixing model to compute the
exact elemental concentrations and mass for a single soil core, along with their SI
units and brief descriptions.

standard deviation of measurement error) is suffi-
cient to resolve mass-balance weathering in an indi-
vidual soil sample, grossly overlooking the impact of
variance in natural soil (among other sources of vari-
ability) and generally neglecting any serious treat-
ment of uncertainty. In fact, although conditions
vary and laboratory precision is important, sources
of variability outside of the lab usually dominate
the overall noise. As such, understanding and plan-
ning adequately for baseline variability in experi-
ments, field trials, and commercial deployments is
absolutely critical.

Monty addresses spatial variability explicitly, al-
lowing baseline soil concentrations to be sampled
from arbitrary multivariate distributions. This
includes Gaussian Processes—multivariate normal
distributions with the covariance matrix structured
by the distances between points—a natural choice
for inducing spatial autocorrelation in soil concen-
trations.

The spatial structure of a field’s properties can
be conveniently defined by a theoretical variogram.
These are common functions in geostatistical appli-
cations that describe the similarity between points
based on their distance and can be used to define
the covariance matrix of a multivariate normal dis-
tribution representing that similarity. Importantly,
these functions allow for variability even at very
close (nearly zero) distances. Variability on short
distances is commonly observed in real soil and it
determines the utility of compositing strategies.

4.2 Single Core Sensitivity

Here we examine the sensitivity of a single soil
core’s elemental concentration, using Monty’s mix-
ing model (Section 4.1.1). Before complex simula-
tions with many sources of variability and noise, we
build some intuition for what parameters fundamen-
tally influence the concentration of any given sam-
ple. The balance of this influence indicates which
parameters are important, as sources of variability
in the field, for mass-balance MRV. This kind of
analysis is relatively simple but illuminating.

4.2.1 Local Sensitivity

First, the most basic sensitivity analysis. We assume
representative values for the mixing parameters and
look at the model’s gradient with respect to those
parameters, using convenient automatic differentia-
tion [24] tools. This shows us the first-order effect
of each parameter on the elemental concentration of
a hypothetical soil core.

For this example, we examine only one element’s
concentration, using soil and feedstock concentra-
tions representative of a base cation like calcium
mixed into agricultural soil. We ignore the core’s
cross-sectional area (a) because it only influences
the core’s total mass, not its concentration. The
parameters are

• γ = 0.9 kg/kg

• d = 10 cm

• Q = 3 kg/m2 (about 13 short ton/acre)

• ρf = 3000 kg/m3
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• cf = 0.05 kg/kg (50,000 ppm)

• ρs = 1000 kg/m3

• cs = 0.003 kg/kg (3,000 ppm)

• l = 0.5 kg/kg

• L = 0.5 kg/kg

Figure 5 shows how much the elemental concen-
tration of a soil core changes when the input param-
eters are changed. It shows the partial derivative for
each parameter multiplied by 1 % of its input value.
So, each bar shows how much the soil core’s concen-
tration changes for a 1 % change in the parameter,
in units of ppm for convenience.
Some model parameters are almost negligible in

this scenario. Changes in the feedstock mass loss
(L) and the feedstock bulk density (ρf ) have almost
no impact on the soil core’s concentration. This is
straightforward to understand. The feedstock mass
is only a small portion of the overall core’s mass,
about 1.5 %. The rest of the core’s mass comes
from baseline soil. As such, changes in the total
mass of the feedstock (L), independent of changes in
the element of interest, barely matter. For the same
reason, the vertical space occupied by the feedstock
is minimal, so it displaces almost no background soil
and its bulk density (ρf ) is immaterial.
Core concentration is sensitive to all the other pa-

rameters with this set of input values. The element
loss fraction (l) predictably causes a decrease in the
core concentration. Increasing soil bulk density and
sample depth also decreases core concentration by
increasing the soil mass in the core and diluting the
feedstock’s contribution.
The baseline soil concentration is the most impor-

tant mixing parameter. This is explained by the fact
that almost all of the mass in the soil core is derived
from baseline soil, not feedstock. The feedstock mix-
ing fraction is only about 1.5 % in this case and will
generally be no larger than a few percent under re-
alistic conditions, so changes in soil concentration
almost always translate to nearly equal changes in
core concentration. Put another way, if c represents
the mixed core’s concentration, ∂c/∂cs ≈ 1.

This is only one set of input parameters and the
sensitivities shown here are meaningfully different
from other choices. For example, the application
rate (Q) has been very high in some experiments
and field trials. In that scenario, changes in all feed-
stock parameters will have more influence on core
concentration. It’s also important to note that a 1
% change in each input parameter is an arbitrary
choice. What ultimately matters is how much each
parameter varies in the experiment or field. For ex-
ample, baseline soil concentrations could vary by 30

Figure 5: The relative gradient of the mixing model
for one set of inputs, showing how much a soil core’s
concentration changes due to +1 % changes in each input
parameter, in units of ppm.

% spatially and sample depth by much more than 1
% (which is only a millimeter for a 10 cm core). The
balance of each parameter’s variability determines
its importance for core concentration variability.

4.2.2 Global Sensitivity

Another way to quantify the importance of mixing
parameters is with global sensitivity analysis (GSA).
Here we use the Sobol method [8], which decom-
poses the variance of model output into fractions
that that are attributable to individual parameters
or groups of parameters. Importantly, the method
samples from a range of values for each input.

As discussed above, the correspondence between
the concentration of a soil core and that of the base-
line soil is very strong unless there is an extremely
high application rate. For that reason, soil concen-
tration (cs) is left out of this GSA and set to 3,000
ppm. We use one million samples from the model
with the following parameter ranges:

• γ ∈ [0.1, 1] kg/kg

• d ∈ [5, 25] cm

• Q ∈ [0, 5.6] kg/m2 (up to 25 short ton/acre)

• ρf ∈ [1000, 3000] kg/m3

• cf ∈ [0.04, 0.1] kg/kg (40,000 to 100,000 ppm)

• ρs ∈ [500, 1500] kg/m3

• l ∈ [0, 1] kg/kg

• L ∈ [0, 1] kg/kg

Note that the results of the GSA do depend on these
parameter ranges. They represent plausible ranges
for most experiments, trials, and deployments.
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Figure 6: First- and second-order Sobol indices for mix-
ing parameters, ignoring the baseline soil concentration
(set to 3,000 ppm).

Figure 6 shows Sobol indices for these parameters.
The upper panel shows first-order indices, which
quantify the direct contribution of each parameter
to core concentration variance, ignoring contribu-
tions from interaction with other parameters. As in
the local sensitivity analysis (Section 5), the feed-
stock bulk density and total mass loss have very
little effect on core concentration. Again, this is
because feedstock mass represents a small portion
of the core’s total mass under plausible conditions.
The application rate (Q) and elemental loss frac-

tion (l) have the strongest first-order effects on core
concentration for the chosen parameter ranges. The
sampled feedstock fraction (γ) and core depth (d)
are also meaningful. The feedstock concentration
(cf ) and soil bulk density (ρs) are less influential,
but not negligible.
Second-order Sobol indices indicate that the

application rate and loss fraction interact most
strongly with other parameters and with each other.
These interactions have moderate overall effects on
the ultimate core concentration, compared to the
first-order effects. Here again, we see no effect of
total feedstock mass loss or feedstock bulk density.
There are some comparatively weak interactions be-
tween soil bulk density, feedstock concentration, and
other parameters.

4.2.3 Sensitivity Summary

The most important aspect of soil-feedstock mix-
tures in ERW is that the feedstock mass likely makes
up no more than a few percent of the mixture’s to-
tal mass. Generally, α ≤ 0.05. The total mass of
a sample is only barely modified by feedstock ap-
plication and loss unless the application rate is ex-
tremely high and/or sampling is very shallow. This
explains the mixture concentration’s insensitivity to
feedstock bulk density (ρf ) and bulk mass loss (L).

Low feedstock mixing fraction also explains the
dominant influence of baseline soil concentration on
sample concentration for almost any element. It
might seem obvious, but because baseline soil com-
prises nearly all of the mass in any given sample,
changes in baseline soil concentrations strongly in-
fluence mixed concentrations.

Feedstock addition and feedstock properties do
matter, but their effects are usually diluted by sig-
nificant amounts of background soil mass. The lo-
cal sensitivity analysis (Section 4.2.1) also discusses
this. Exceptions include cases with extremely low
soil concentrations or extremely high feedstock ap-
plication.

However, it’s also important to remember that
these sensitivities are only relevant in the context of
variability. If the baseline soil concentration is very
homogenous, its impact is attenuated. Similarly, if
the application rate is highly spatially variable, its
impact is amplified.

5 Estimation & Inference

As reviewed in Section 2, there are many possible
ways to compute CDR from the geochemical data
produced for mass-balance MRV methods. These
data consist, at minimum, of elemental concentra-
tion measurements at two different times during
an experiment or deployment, including the major
cations and possibly other elements as tracers. In
some cases, information like sample depth and soil
density is also necessary.

The goal of mass-balance MRV is to use these ob-
servations to estimate or infer initial CDR for some
domain (experiment, field, group of fields, etc.) with
uncertainty. The literature on experimental statis-
tics is vast. We only discuss the most salient topics
below.

5.1 Estimating CDR

ERW practitioners estimate average cation concen-
tration changes and their uncertainties as a proxy
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for initial CDR. Some authors use error propagation
methods [14, 2], usually by assuming each compo-
nent of an expression for CDR has normally dis-
tributed uncertainty and propagating that uncer-
tainty through an expression for CDR. This ap-
proach can be workable but has limitations for a
complex estimand like CDR and with more complex
datasets.

First, it often assumes normally distributed er-
rors, which may not be appropriate. Second, as
briefly discussed in Section 2.1.2, using tracers to in-
fer the mixing fraction αi requires division by wi−si.
If the error in this term is large, it might overlap
zero and include significant probability mass on neg-
ative values, which is problematic. If the propaga-
tion is carried out by Monte Carlo sampling, for ex-
ample, samples will occasionally produce extremely
large (positive or negative) values when wi− si ≈ 0.
More generally, as the probability density on zero
increases in the denominator (wi− si), the ratio be-
comes increasingly badly behaved and ultimately a
Cauchy distribution. Third, error propagation be-
comes very unwieldy for more complicated datasets
and models. For example, it would be difficult to use
error propagation in a scenario where several rounds
of samples are available over time and the goal is to
estimate the parameters of a weathering curve, using
all of the available data simultaneously. It’s better
to take a more unified statistical approach.

Another compelling option for computing average
initial CDR with uncertainty is bootstrapping [16].
Non-parametric bootstrapping assesses the uncer-
tainty of a sample estimate by resampling from the
observations with replacement, repeatedly calculat-
ing the desired quantity (CDR in this case) from the
resampled cases. Importantly, resampled datasets
are the same size as the original, which can be a
point of confusion, and the observations themselves
must be independent. Bootstrapping is particu-
larly useful when the quantity of interest is a com-
plex function of the observations, which is usually
true for mass-balance methods, especially when us-
ing tracers. This flexibility is a major strength and
makes bootstrapping a good choice for CDR estima-
tion. However, as with error propagation, resampled
estimates can produce pathologically large values
when estimating the dissolution fraction (Equation
11) and for the same reason.

5.2 Bayesian Inference

Bayesian modeling is another way to understand
how much initial CDR occurred in an experiment
or deployment. It is a deep topic and we recom-

mend McElreath [18], Kruschke [15], and Gelman
et al. [9] for those unfamiliar. To our knowledge,
Bayesian models have not been used for field tri-
als in ERW or by other commercial suppliers but
they have some significant advantages for mass bal-
ance MRV and for ERW quantification broadly. We
summarize some of these advantages below in the
context of ERW.

First, Bayesian models allow for explicit, rigorous
incorporation of physical context and constraints—
prior understanding. This context can both improve
the accuracy of our results for CDR and include
sources of uncertainty that are known to exist but
difficult to incorporate with other statistical meth-
ods. For example, one component of mass-balance
methods that is often overlooked is the fraction of
applied feedstock mass that is contributed by wa-
ter adsorbed to the surface of fine particles. This
moisture fraction is generally not negligible and di-
rectly affects the total amount of CDR that can
occur through ERW, but it’s never known exactly.
Bayesian models can incorporate this uncertainty di-
rectly.

Even with quality control practices, the same is
also true for other deployment parameters. We gen-
erally do not know, with perfect precision, the ex-
act feedstock mass spread on the treatment area,
elemental concentrations in feedstock, and so on.
These parameters influence CDR and Bayesian
models can incorporate their uncertainty naturally.
Such models can also enforce physical constraints,
like the fact that total CDR must not imply that
more feedstock dissolved than was initially spread
on the field.

Second, Bayesian models are flexible. They can
represent complex processes and incorporate diverse
sources of data jointly. For example, they can in-
corporate any number of tracer elements, any num-
ber of cations, and any number of sampling rounds
coherently, all at the same time. They can model
known physical relationships, like the general expec-
tation that calcium and magnesium dissolution rates
are not radically different. They can be structured
hierarchically, for example when partially pooling
information across groups of experimental replicates
or entire deployments. Ultimately, data from every
deployment managed by an institution or company
could be incorporated into a single unified model.

Third, the result of Bayesian modeling is a pos-
terior distribution, which has a very direct interpre-
tation. This can be an advantage compared to con-
fidence intervals or p-values, which are frequently
misinterpreted. Posterior distributions can also be
an advantage for subsequent decision-making or fur-
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ther incorporation of uncertainty. The posterior dis-
tribution for CDR is just a probability distribution:
a description of how probable different values are.

Fourth, after conditioning on data, Bayesian mod-
els can be used to predict subsequent observa-
tions with clear incorporation of the uncertainty
for each parameter in the model. In ERW, for ex-
ample, properly structured models could learn to
predict dissolution rates from correlated associa-
tions between observations of soil acidity, cation ex-
change capacity, porosity, soil type, hydrology, etc.
Bayesian models can always be used to both infer
and predict. This is not workable with error propa-
gation methods, for example.

At the same time, one of the strengths of
Bayesian models—grounding in prior understanding
and physical knowledge—can also be a weakness. To
be credible, the assumptions made by such models
must be fully transparent, justifiable, and open to
refinement and criticism. This includes both prior
distributions and the model structure itself. It is
also critical to remember that the flexibility of these
models does not correct for inadequate sample size,
bad experimental design, or other errors. Collecting
a sufficient amount of high-quality data from well-
planned trials is always the priority.

5.3 Demonstration Model

Here we demonstrate the use of a Bayesian model
for CDR inference in the mass-balance framework.
We use simulated data from Monty because we can
dictate the correct answer underlying the simulated
data and confirm that the model behaves as ex-
pected. For a Bayesian model, we can check that
the posterior distribution contracts toward the cor-
rect values for each parameter and, with more data,
contracts further. In this case, we ignore tracers,
simulating and then inferring CDR using only the
major cations calcium and magnesium. Tracers (any
number of them) can certainly be incorporated into
a Bayesian model like the one presented here, but
we ignore them for brevity and clarity.

5.3.1 Hypothetical Deployment

To produce simulated data, we imagine a hypothet-
ical field trial on a small parcel of land, only 1.58
acres (6400 m2). The parcel is divided into an 8 by 8
grid of cells. Columns of the grid alternate between
treatment and control groups. Figure 7 shows the
spatial arrangement of the hypothetical trial. One
composite sample is taken from each cell for each of
three sampling rounds:

Figure 7: The arrangement of the hypothetical deploy-
ment used to generate data for the Bayesian modeling
example.

1. immediately before spreading

2. immediately after spreading

3. one year after spreading

Figure 8 shows the timeline.
Target sample locations are selected randomly

from within each cell, but the target location for
each cell is identical for all three rounds of sampling.
Random, normally distributed error (σ = 0.75 m) is
applied to the realized location of each sample, rep-
resenting unavoidable inaccuracy in the hypotheti-
cal soil sampler’s GPS and point-finding ability.

Each sample is a composite made up of five indi-
vidual soil cores arranged in a circle with a radius of
2 m around the sample location. Random normally
distributed error is also applied to each core’s loca-
tion (σ = 10 cm). Soil core depths vary between 5
cm and 15 cm according to a symmetric triangular
distribution.

The whole sampling plan consists of 960 individ-
ual soil cores which are composited into 192 sam-
ples, then measured. In each sampling round, there
are 32 samples in both the treatment and control
groups. To be clear, we are not indicating that this
sample plan is optimal, but using it to demonstrate
simulation and modeling capabilities. Also, just for
reference, laboratory analysis of all samples at $50
per sample would cost $9600.

Feedstock is spread on treatment cells with a
mean application rate of 3.5 kg/m2 of dry mate-
rial. The application rate has variability and spa-
tial structure determined by an anisotropic theo-
retical variogram [11] that represents a moderately
streaked/striped pattern potentially produced by
spreading equipment. This structure is realized us-
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round 1

Sampling 
round 3
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round 2

Figure 8: A simple timeline showing sampling rounds
before feedstock application, after feedstock application,
and after some period of weathering. Three rounds of
sampling.

ing a Gaussian Process. Three realizations of this
spatial structure are shown in Figure 9.

Feedstock is assumed to have a constant bulk den-
sity of 1000 kg/m2. It has calcium and magnesium
concentrations of 7 % and 5 % by mass, respectively,
with a simulated 3 % relative standard deviation for
both cation concentrations. Feedstock is assumed
to be mixed only to shallow depths no greater than
5 cm.

Baseline soil concentrations for calcium and mag-
nesium are also defined by theoretical variograms
and realized by Gaussian Processes. The mean soil
concentrations are 0.2 % and 0.1 % by mass, for
calcium and magnesium respectively. Cation con-
centrations exhibit spatial correlation with them-
selves and with each other, with a prescribed cross-
correlation coefficient of 0.75. The baseline soil bulk
density is 1000 kg/m3, on average, with a standard
deviation of 100 kg/m3 and spatial structure also
defined by a variogram (and realized by a Gaussian
Process).

The dissolution and leaching of calcium and mag-
nesium out of feedstock is modeled with exponential
functions, li = 1 − exp(λt). Although this is likely
not appropriate for more frequent sampling because
of seasonally dependent weathering rates, we appeal
to the sampling interval of exactly 1 year, which
avoids seasonal effects. The decay parameters for
calcium and magnesium are 0.4 and 0.8 yr−1. This
means, for example, that after 1 year of weather-
ing, the loss fraction for calcium is 1− e−0.4 = 0.33,
or 33 %. For magnesium, it’s about 55 %. These
are mostly arbitrary choices for demonstration and
do not necessarily constitute a representation of real
dissolution rates.

Figure 10 shows the values of some key quanti-
ties at soil core locations for one realization of the
simulation. Note that the application rate, soil con-

centrations, and soil bulk density exhibit spatial au-
tocorrelation, but sample depth does not. Every
simulated quantity is realized at every core in the
sampling plan and passed to the mixing model (Sec-
tion 4.1.1) where they are used to compute the ex-
act concentration of the hypothetical soil core pulled
from the ground.

After compositing each group of cores (averaging
the concentrations by mass) analytical noise with 3
% relative standard deviation is applied. The mass
of the final sample is also “measured” with a 0.5 %
error. Figure 11 shows the final concentrations of
each sample, grouped by the sampling round and
their treatment/control assignment. As expected,
treatment samples are significantly enriched in cal-
cium and magnesium after spreading, and then some
of the enrichment is lost to weathering after a year.
Control samples have approximately the same con-
centrations over time.

5.3.2 Model Definition

Because samples are taken at approximately the
same locations for each sampling round, we model
the differences in concentrations over time for the
cells of the sample grid. This reduces the impact of
spatially variable baseline soil concentrations across
the entire plot when sampling different locations for
each round. Because the model definition is long,
we explain it in pieces, in detail. The model imple-
mentation (in PyMC [29]) is also available online.

Several deployment and sampling parameters de-
termine the maximum possible amount of initial
CDR, which is ultimately set by the total feedstock
mass applied. These priors are the total moist feed-
stock mass applied (Mwet), the treatment area (A),
the sample depth (d), the moisture fraction in feed-
stock (ϕ), and the feedstock cation concentrations
(cf,j). We use bold font for symbols representing
vectors and bold upper-case for matrices. Note that
the subscript j is used for the two cations. The mul-
tivariate normal distribution below indicates that
the feedstock is, on average, 7 % calcium and 5 %
magnesium by mass, with 5 % relative standard de-
viation for each characterizing the uncertainty. We
could, with good reason, also encode a correlation
between feedstock cation concentrations by setting
the off-diagonal components of the covariance ma-
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Figure 9: Three realizations of the Gaussian process used to generate application rates at sample points. A
“realization” is a random draw from the multivariate Gaussian distribution produced by the Gaussian process. In
these cases, the Gaussian process is realized over a dense grid to better visualize its spatial structure, even though
for simulation it is only realized at soil core locations. Here, it is realized over the entire grid, then grayed out over
control cells. The spatial pattern of spreading rates has some short-distance variability

trix appropriately.

Mwet ∼ Normal(12800, 100)

A ∼ Normal(3200, 32)

d ∼ Gamma(µ = 0.1, σ = 0.025)

ϕ ∼ Normal(0.125, 0.025)

cf,j ∼ MvNormal

([
0.07
0.05

]
,

[
0.00352 0

0 0.00252

])

From these parameters, we compute the dry feed-
stock mass (Mdry) and application rate (Q) deter-
ministically.

Mdry = (1− ϕ)Mwet

Q = Mdry/A

The prior for soil density (ρs) can be based on ex-
isting agronomic measurements or an understanding
of the soil type. It could also be directly measured
for each sample, in which case it would not have a
prior and would be incorporated into the model as
data. Here we have a prior, which enables subse-
quent deterministic calculation of the soil mass in
the sampled layer (Msoil), the expected mixing frac-
tion of feedstock in soil after spreading (α), and the
mixed concentration of each cation in the feedstock-
soil mixture after spreading (Cmixed,i,j). Note that
we have mixed concentrations for each of i samples
and for each of the j cations. Cmixed,i,j is a two-
dimensional array (a matrix) with samples in the
rows and cations in the columns. It depends on the

mixing fraction, feedstock concentrations, and on
the observed baseline concentrations C1,i,j , where
the subscript 1 indicates the first round of samples
(taken before spreading).

ρs ∼ Normal(1000, 100)

Msoil = ρsd

α = Q/(Q+Msoil)

Cmixed,i,j = αcf,j + (1− α)C1,i,j

The matrix of mixed concentrations represents the
expected concentrations after spreading for each
sampling location. To compare this with observa-
tions, we compute the expected enrichment (Ei,j)
and “compare” this with the observed enrichment
between the second and first sampling rounds.

Ei,j = Cmixed,i,j −C1,i,j

σE,j ∼ Exponential(0.001)

C2,i,j −C1,i,j ∼ Normal(Ei,j ,σE,j)

The last line above contains the first likelihood func-
tion in the model. It evaluates the probabilities of
our observed enrichments, given the expected en-
richments for each sample location. The standard
deviation vector σE,j has two elements, one for each
cation.

Now we take care of the controls. In this case,
we model the difference in control concentrations
between spreading and our observations after one
year. To do so, we model the average difference
in control samples. We use the concentrations at
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Figure 10: Simulated data for the hypothetical deployment. Each panel shows each of the 960 cores in the sampling
plan with their colors defined by various quantities. Each cell of the sampling grid has three circular groups of cores
for each sampling round. Top left: Application rates simulated from the anisotropic Gaussian process with control
points ignored (Q = 0). Top right: Soil bulk density. Middle left: The sampling round for each core. There
are three rounds of sampling, with the baseline in blue, post-spreading in orange, and post-weathering (1 year) in
green. Middle right: Core depth, which varies between 5 and 15 cm. Bottom: Baseline calcium and magnesium
concentrations. Each cation is spatially correlated with itself and they are spatially correlated with each other.
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Figure 11: Calcium and magnesium concentrations for
the hypothetical deployment in each sampling round.
In the “before spreading” round, treatment and control
samples are the same. After spreading, the treatment
samples are enriched in both cations and the controls
are stable. Then, after weathering, some of the cation
enrichment in the treatment samples is lost to weather-
ing.

sampling round 3 and the average of sampled con-
centrations in rounds 1 and 2, which were taken at
almost the same point in time. We could alterna-
tively only use observations from round 2, but this
would discard relevant information. We use Ω to
denote matrices of control sample concentrations.

σω,j ∼ HalfNormal(0.001)

∆ωj ∼ Normal(0, 0.001)

∆Ωi,j = Ω3,i,j − (Ω1,i,j +Ω2,i,j)/2

∆Ωi,j ∼ Normal(∆ωj ,σω,j)

This block of definitions gives us the average change
in control sample concentrations over the weather-
ing period (∆ωj) for both cations. The prior for
these changes is relatively wide compared to average
soil concentrations. The last line above contains the
second likelihood function in the model.
Next, we model the change in concentrations due

to weathering between sampling rounds 2 and 3. We
have already defined parameters representing cation
enrichment from spreading and cation changes in the
control samples. Now we model losses of calcium
and magnesium in the treatment group.
We approach this with a hyperprior for the frac-

tion of cation mass lost from feedstock across both
elements. This encodes a loose expectation that cal-
cium and magnesium losses are similar in magni-
tude. We generally don’t expect to see 8 % calcium
loss and 80 % magnesium loss, for example. This

expectation depends on the mineralogy and chem-
istry of a given feedstock and the parameters chosen
here are for demonstration.

µloss ∼ Uniform(0, 1)

σloss ∼ Beta(1, 6)

lj ∼ Normal(µloss, σloss)

The average loss parameter µloss represents the
mean loss fraction of both calcium and magnesium.
It’s uniform over the [0,1] interval, which means that
we have no particular expectation for cation loss,
just that it must be within physical bounds. The
model has no prior preference for 0 % cation loss,
100 % cation loss, or anything in between. Again,
this is just a demonstration, and specific prior ex-
pectations for cation losses can be represented.

The parameter σloss defines how similar we expect
the loss fractions to be and the choice above encodes
only a loose expectation of similarity. From these
hyperpriors, we define two loss fractions lj for the
individual cations.

Now we define two more deterministically pro-
duced matrices of concentrations. The loss frac-
tions for each cation (lj) are applied to the
modeled enrichment (Ei,j) and then incorporated
into the expected concentrations after weathering
(Cweathered,i,j). The post-weathering concentrations
account for the average change in concentrations in
the control samples (∆ωj).

Closs,i,j = ljEi,j

Cweathered,i,j = C2,i,j − (Closs,i,j −∆ωj)

The weathered concentrations computed above are
what we observed in the third round of sampling.
The third and final likelihood function, after defin-
ing a prior for the variability, is below.

σweathered,j ∼ Exponential(0.001)

C3,i,j ∼ Normal(Cweathered,i,j ,σweathered,j)

We can incorporate deterministic nodes in the
model for CDR, in several forms, for convenience.

CDRpotential = Qcf,j ·
[
2.196
3.621

]
CDR = Q(lj ◦ cf,j) ·

[
2.196
3.621

]
CDRcompletion = CDR/CDRpotential

CDRtotal = A× CDR/1000

The vectors of literal numbers above are the conver-
sion factors for calcium and magnesium, converting
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their mass losses to CO2 mass loss for initial CDR
(see Equation 1 and surrounding discussion). The
conversion is done by dot product of the two vectors
above. The units of CDR for the top two equations
are mass per area. CDR completion is a fraction.
The total CDR is in metric tons of CO2 .

There are several modifications to this model that
make sense in different scenarios. For example, the
likelihood functions can also be T distributions if
we’d like the model to be more robust to potential
outliers. Cation losses (and the related hyperpriors)
can also be defined in a number of ways to encode
prior expectation about loss fractions for different
scenarios.

5.3.3 Model Results

Now we fit the model (Section 5.3.2) using one real-
ization of the hypothetical deployment data (Section
5.3.1). The realization chosen for this example is the
same one shown in Figure 11. It was the first one
produced in a batch of 10,000 realizations of the hy-
pothetical deployment and was not chosen because
the results look particularly good or bad by random
chance.

We perform prior predictive simulations to char-
acterize and visualize prior distributions and im-
plied distributions. Then we sample from the pos-
terior using the NUTS [12] sampler built into the
PyMC package [29]. We sample 8,000 draws from 16
chains, discarding the first 4,000 samples from each
chain and keeping 64,000 samples total. Sampling
completed with zero divergent transitions, no sign
of poorly mixing chains, and a maximum R̂ statis-
tic [26] across all parameters of 1.0006. We also
check that posterior predictive simulations align ad-
equately with the observations. See the provided
code for more details.

Figure 12 compares prior and posterior probabil-
ity distributions for a few key model parameters,
using kernel density estimates from the sampled val-
ues. The sample depth is updated considerably
and the loss fractions for calcium and magnesium
contract substantially around mean values of about
33 % and 55 %, respectively. This is strong evi-
dence that the model is recovering correct informa-
tion from the simulated data because the prescribed
loss fractions are 33 % and 55 %.

Figure 13 shows posterior distributions for the
quantity of greatest interest, initial CDR, along
with mean values and 95 % highest density inter-
vals (HDI). In this case, our inference is that initial
CDR is between 1.5 and 1.9 metric tons of CO2 with
95 % probability. Equivalently, there is a 95 % prob-

ability that between 41 and 49 % of the theoretical
maximum amount of initial CDR has occurred in
the simulated deployment. We know the correct an-
swer for initial CDR because it was prescribed in the
Monty simulations. The vertical green lines show the
correct values, which are comfortably inside the pos-
terior distributions.

5.4 Bootstrapping Validation

As mentioned in Section 5.3.3, the simulated deploy-
ment described in Section 5.3.1 was realized 10,000
times, drawing randomly from all of the stochas-
tic parameters simultaneously for each realization.
Only the first realization was used in the Bayesian
model.

Additionally, we applied our internal analysis
pipeline to each of the 10,000 realizations, using non-
parametric bootstrapping to estimate initial CDR.
This analysis code was written before Monty was cre-
ated and in Python. Results are shown in Figure
14. Bootstrapping recovers the correct answer, on
average. Confidence intervals achieve their nominal
coverage frequency, bracketing the correct answer at
rates close to expectations. This is strong evidence
that the code is correct and the analysis pipeline is
reliable.

6 Conclusion & Summary

In Section 2, we reviewed background information
relevant to ERW and explained the goals of mass-
balance MRV. Then we detailed the assumptions
and equations involved in tracer methods, where
immobile elements are used to infer cation losses
from feedstock in soil without directly measuring ini-
tial concentrations in the mixture. Tracer methods
can be powerful but are also fragile in some con-
texts. First, they rest on assumptions about mass-
conservation that are only approximations, which
can introduce bias and error. Second, tracer meth-
ods break down when the concentration gap be-
tween feedstock and baseline soil is too small be-
cause the signal is obscured by many sources of
variability and noise. It is always better to have
higher tracer concentrations in feedstock and tracer
methods will not work if feedstock concentrations
are lower than baseline soil. Third, using multi-
ple tracer elements simultaneously can be advanta-
geous, but different baseline concentration magni-
tudes must be addressed to fully utilize each ele-
ment. Finally, tracer elements may not be avail-
able. Feedstock may have zero tracer elements with
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Figure 12: Comparison of prior (orange) and posterior (blue) distributions for a few key model parameters. The
dots below each distribution show mean values. The prior for the sample depth is a Gamma distribution with a mean
of 10 cm and standard deviation of 2.5 cm based on our understanding of (imaginary) soil core collection. After
conditioning the model on the synthetic data, the sample depth is further constrained. The prior for CDR, per unit
area, is approximately uniform between zero and the maximum amount possible given applied feedstock mass (in
this case about 1 kg/m2). Feedstock cation losses, expressed as fractions of the total mass, are also constrained by
prior distributions to be between zero and one with some very limited probability density outside of that interval.
Posterior distributions for cation loss fractions narrow considerably, compared to the priors
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Figure 13: Posterior distributions for initial CDR. Total CDR, in metric tons of CO2, is shown on the left. The
CDR completion fraction is shown on the right, which references the maximum amount of initial CDR possible, given
the mass of feedstock applied and its cation concentrations. The vertical green line in each panel shows the correct
answer, which we know because we prescribed it in the generation of the synthetic data.

Figure 14: Results from bootstrapped CDR estimation using 10,000 separate realizations of the hypothetical de-
ployment described in Section 5.3.1. The bootstrapping code for these calculations was written before Monty. Point
estimates for each realization are shown in the histogram on the left. Across realizations, the estimates are recovering
the correct answer, on average. The panel on the right shows whether bootstrapped confidence intervals are achiev-
ing their nominal coverage frequency. The blue dots show how frequently confidence intervals for different quantiles
bracket (cover) the correct answer. If so, they should fall along the dotted line. They largely do, indicating that the
confidence intervals are correctly representing uncertainty in the estimates.
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high enough concentrations, given target deploy-
ment soils. In general, all of these issues are avoided
when tracer concentrations in feedstock are much
higher than in baseline soil. Generally, our recom-
mendation is about an order of magnitude.

In Section 2, we also discussed tracer-free mass-
balance methods, or “cation stock monitoring” (Sec-
tion 2.2). This approach is conceptually and statis-
tically simple, compared to tracer methods. The
masses of base cations like calcium and magnesium
are monitored over time by measuring their concen-
trations in soil, along with bulk density and a well-
known sampling depth. These elements are always
highly enriched in feedstock because they define a
feedstock’s CDR potential. This approach is also
directly analogous to SOC monitoring and applied
research in that area can be utilized. Although con-
ceptually simple, cation stock monitoring requires
precise operations in the field. In particular, sam-
pling depth must be well-planned, accurate, and
consistent across different rounds of sampling.

Section 2 closes with some discussion of signal
size, variability, and noise. Mass-balance methods
rely on accurate resolution of concentration changes
in soil. For major cations like calcium and magne-
sium, relevant concentration changes are probably
around 100-1000 ppm. For tracer elements, concen-
tration changes could be similar in magnitude but
may also be very small for trace elements. These
changes, however, are only meaningful in the con-
text of background variability and noise. We dis-
cuss this topic in Section 2.4, outlining sources of
variability in mass-balance ERW and noise in labo-
ratory analysis.

In Section 3, we review some difficulties and is-
sues in ERW research, which demands rigorous and
unbiased quantification of CDR. In general, experi-
ments and field trials need to be fully planned before
they are carried out, including a clear plan for how
collected data will be analyzed. Thorough planning
helps ensure that all necessary information is col-
lected at the correct time, that enough samples are
collected, and that the analysis plan will address the
central research question confidently and accurately.
Thorough planning also helps avoid potential biases
due to analysis choices, like which groups of data
to include/exclude, how to average across groups,
which statistical methods to use, etc. Analyzing a
dataset in multiple ways, and then presenting only
one way that yields a desired result, is not a reliable
practice.

One way of testing experimental plans is by sim-
ulation of the data-generating process. In Section
4 we present a publicly available software package

designed to simulate geochemical datasets collected
for mass-balance MRV in ERW. The package can
be used for several tasks, like understanding how
various sources of uncertainty contribute to uncer-
tainty in CDR, validating statistical methods, and
selecting appropriate sample sizes. At the core of
this package is a simple mixing model, describing
how the concentration of an individual soil sample
depends on the properties of baseline soil and (po-
tentially) weathered feedstock. In Section 4.2, we
show how this mixing model can be used to under-
stand the sensitivity of a single sample to changes
in feedstock and soil properties.

In Section 5 we review some ways of quantify-
ing uncertainty in initial CDR and address strengths
and weaknesses, before discussing some advantages
of Bayesian inference in mass-balance MRV. We gen-
erate synthetic geochemical data for a hypothetical
deployment, present a slightly simplified Bayesian
model and infer initial CDR from the dataset. Be-
cause we generated the data, we know the correct
answer and can check that the model recovers the
correct answer, which it does. Finally, in Section
5.4, we show an example validation of CDR esti-
mates and bootstrapped confidence intervals for the
same hypothetical deployment.

Software & Data Availability

The software described in this manuscript is open-
source and publicly available under the GPL-3.0 li-
cense.

• The simulation package (Monty) is available at
https://github.com/LithosCarbon/Monty.jl

• Documentation and examples are available at
https://lithoscarbon.github.io/Monty.jl

• Simulation results and the results of Bayesian
inference on simulated data, as described in
Section 5.3, are fully available, in addition to
the exact version of the code used to pro-
duce these results. The simulation results are
archived as both NetCDF files and CSV files,
for convenience. Prior predictive and posterior
sampling is archived in NetCDF format. These
files are all archived at
https://doi.org/10.5281/zenodo.11621611
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