Radiation

Core Radiation Functions

ClearSky.planckFunction
planck(ν, T)

Compute black body intensity [W/m$^2$/cm$^{-1}$/sr] using Planck's law

Arguments

  • ν: wavenumger [cm$^{-1}$]
  • T: temperature [Kelvin]
source
ClearSky.normplanckFunction
normplanck(ν, T)

Compute black body intensity [W/m$^2$/cm$^{-1}$/sr] using Planck's law, normalized by the power emitted per unit area at the given temperature (stefanboltzmann),

B(ν,T)/σT^4

yielding units of 1/cm$^{-1}$/sr.

Arguments

  • ν: wavenumger [cm$^{-1}$]
  • T: temperature [Kelvin]
source
ClearSky.dτdPFunction
dτdP(σ, g, μ)

Evaluate the differential increase in optical depth in pressure coordinates, equivalent to the schwarzschild equation without Planck emission.

$\frac{dτ}{dP} = σ\frac{\textrm{N}_A}{g μ}$

where $N_A$ is Avogadro's number.

Arguments

  • σ: absorption cross-section [cm$^2$/molecule]
  • g: gravitational acceleration [m/s$^2$]
  • μ: mean molar mass [kg/mole]
source
ClearSky.schwarzschildFunction
schwarzschild(I, ν, σ, T, P)

Evaluate the Schwarzschild differential equation for radiative transfer with units of length/height [m] and assuming the ideal gas law.

$\frac{dI}{dz} = σ\frac{P}{k_B T}[B_ν(T) - I]$

where $B_ν$ is planck's law.

Arguments

  • I: radiative intensity [W/m$^2$/cm$^{-1}$/sr]
  • ν: radiation wavenumber [cm$^{-1}$]
  • σ: absorption cross-section [cm$^2$/molecule]
  • T: temperature [K]
  • P: pressure [Pa]
source
schwarzschild(I, ν, σ, g, μ, T)

Evaluate the Schwarzschild differential equation for radiative transfer with pressure units [Pa] and assuming the ideal gas law.

$\frac{dI}{dP} = σ\frac{\textrm{N}_A}{g μ}[B_ν(T) - I]$

where $B_ν$ is planck's law and $N_A$ is Avogadro's number.

Arguments

  • I: radiative intensity [W/m$^2$/cm$^{-1}$/sr]
  • ν: radiation wavenumber [cm$^{-1}$]
  • σ: absorption cross-section [cm$^2$/molecule]
  • g: gravitational acceleration [m/s$^2$]
  • μ: mean molar mass [kg/mole]
  • T: temperature [K]
source

Radiation Unit Conversions