Radiation
Core Radiation Functions
ClearSky.planck — Functionplanck(ν, T)Compute black body intensity [W/m$^2$/cm$^{-1}$/sr] using Planck's law
Arguments
ν: wavenumger [cm$^{-1}$]T: temperature [Kelvin]
ClearSky.normplanck — Functionnormplanck(ν, T)Compute black body intensity [W/m$^2$/cm$^{-1}$/sr] using Planck's law, normalized by the power emitted per unit area at the given temperature (stefanboltzmann),
B(ν,T)/σT^4yielding units of 1/cm$^{-1}$/sr.
Arguments
ν: wavenumger [cm$^{-1}$]T: temperature [Kelvin]
ClearSky.stefanboltzmann — Functionstefanboltzmann(T)Compute black body radiation power using the Stefan-Boltzmann law, $σT^4$ [W/m$^2$].
ClearSky.equilibriumtemperature — Functionequilibriumtemperature(F, A)Compute the planetary equilibrium temperature, or equivalent blackbody temperature of a planet.
$(\frac{(1 - A)F}{4\sigma})^{1/4}$
Arguments
F: stellar flux [W/m$^2$]A: albedo
equilibriumtemperature(L, A, R)Compute the planetary equilibrium temperature, or equivalent blackbody temperature of a planet.
$(\frac{(1 - A)L}{16 \sigma \pi R^2})^{1/4}$
Arguments
L: stellar luminosity [W]A: albedoR: orbital distance [m]
ClearSky.dτdP — FunctiondτdP(σ, g, μ)Evaluate the differential increase in optical depth in pressure coordinates, equivalent to the schwarzschild equation without Planck emission.
$\frac{dτ}{dP} = σ\frac{\textrm{N}_A}{g μ}$
where $N_A$ is Avogadro's number.
Arguments
σ: absorption cross-section [cm$^2$/molecule]g: gravitational acceleration [m/s$^2$]μ: mean molar mass [kg/mole]
ClearSky.schwarzschild — Functionschwarzschild(I, ν, σ, T, P)Evaluate the Schwarzschild differential equation for radiative transfer with units of length/height [m] and assuming the ideal gas law.
$\frac{dI}{dz} = σ\frac{P}{k_B T}[B_ν(T) - I]$
where $B_ν$ is planck's law.
Arguments
I: radiative intensity [W/m$^2$/cm$^{-1}$/sr]ν: radiation wavenumber [cm$^{-1}$]σ: absorption cross-section [cm$^2$/molecule]T: temperature [K]P: pressure [Pa]
schwarzschild(I, ν, σ, g, μ, T)Evaluate the Schwarzschild differential equation for radiative transfer with pressure units [Pa] and assuming the ideal gas law.
$\frac{dI}{dP} = σ\frac{\textrm{N}_A}{g μ}[B_ν(T) - I]$
where $B_ν$ is planck's law and $N_A$ is Avogadro's number.
Arguments
I: radiative intensity [W/m$^2$/cm$^{-1}$/sr]ν: radiation wavenumber [cm$^{-1}$]σ: absorption cross-section [cm$^2$/molecule]g: gravitational acceleration [m/s$^2$]μ: mean molar mass [kg/mole]T: temperature [K]
Radiation Unit Conversions
ClearSky.ν2f — FunctionConvert wavenumber [cm$^{-1}$] to frequency [1/s]
ClearSky.f2ν — FunctionConvert frequency [1/s] to wavenumber [cm$^{-1}$]
ClearSky.ν2λ — FunctionConvert wavenumber [cm$^{-1}$] to wavelength [m]
ClearSky.λ2ν — FunctionConvert wavelength [m] to wavenumber [cm$^{-1}$]
ClearSky.λ2f — FunctionConvert wavelength [m] to frequency [1/s]
ClearSky.f2λ — FunctionConvert frequency [1/s] to wavelength [m]